Resonance response analysis of nonlinear vibration energy harvesting system under bounded noise excitation
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 1-13.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the resonance response of piezoelectric vibration energy harvester (VEH) driven by bounded noise is discussed through the quasi-conservative stochastic averaging method. A nonlinear transformation based on the total energy is firstly established to transform piezoelectric VEH system from an electromechanical coupled nonlinear system into a single-degree-of-freedom (SDOF) system. Then the SDOF system is rewritten as It\^o stochastic system about the energy and residual phase under the case of p:q resonance through the quasi-conservative stochastic averaging method. And the joint probability density function (JPDF) of the stationary response is obtained by solving the corresponding two-dimensional Fokker-Planck-Kolmogorov (FPK) equation using the finite difference method. Meanwhile, the mean-square electric voltage and the mean output power are further analytically given through the JPDF. Finally, the resonance response of piezoelectric VEH system is analyzed in detail in case of the primary resonance, and the Monte Carlo (MC) simulation technique is adopted to validate the effectiveness of the finite difference method.
DOI : 10.22436/jnsa.015.01.01
Classification : 70L05, 34C15, 34C29
Keywords: Nonlinear vibration energy harvesting, resonance response, bounded noise, quasi-conservative stochastic averaging method, finite difference method

Liu, Di  1 ; Fu, Qianqian 1

1 School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, P. R. China
@article{JNSA_2022_15_1_a0,
     author = {Liu, Di  and Fu, Qianqian},
     title = {Resonance response analysis of nonlinear vibration energy harvesting system under bounded noise excitation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-13},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     doi = {10.22436/jnsa.015.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.01/}
}
TY  - JOUR
AU  - Liu, Di 
AU  - Fu, Qianqian
TI  - Resonance response analysis of nonlinear vibration energy harvesting system under bounded noise excitation
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 1
EP  - 13
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.01/
DO  - 10.22436/jnsa.015.01.01
LA  - en
ID  - JNSA_2022_15_1_a0
ER  - 
%0 Journal Article
%A Liu, Di 
%A Fu, Qianqian
%T Resonance response analysis of nonlinear vibration energy harvesting system under bounded noise excitation
%J Journal of nonlinear sciences and its applications
%D 2022
%P 1-13
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.01/
%R 10.22436/jnsa.015.01.01
%G en
%F JNSA_2022_15_1_a0
Liu, Di ; Fu, Qianqian. Resonance response analysis of nonlinear vibration energy harvesting system under bounded noise excitation. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 1-13. doi : 10.22436/jnsa.015.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.01/

[1] Alevras, P. On the effect of the electrical load on vibration energy harvesting under stochastic resonance, ASCE-ASME J. Risk Uncertainty Eng. Syst., Volume 7 (2021), pp. 1-13 | DOI

[2] Bobryk, R. V. Stochastic multiresonance in oscillators induced by bounded noise-ScienceDirect, Commun. Nonlinear Sci. Numer. Simul., Volume 93 (2021), pp. 1-12

[3] Deng, J.; Xie, W. C.; Pandey, M. D. Stochastic stability of a fractional viscoelastic column under bounded noise excitation, J. Sound Vibr., Volume 333 (2014), pp. 1629-1643

[4] Fan, K.; Tan, Q.; Zhang, Y.; Liu, S.; Cai, M.; Zhu, Y. A monostable piezoelectric energy harvester for broadband low-level excitations, Appl. Phys. Lett., Volume 112 (2018), pp. 1-12

[5] Feng, C. S.; Liu, R. Response of Duffing system with delayed feedback control under bounded noise excitation, Arch. Appl. Mech., Volume 82 (2012), pp. 1753-1761

[6] He, Q.; Daqaq, M. F. Electric load optimization of a nonlinear mono-stable duffing harvester excited by white noise, Meccanica, Volume 51 (2016), pp. 1027-1039

[7] Hu, F.; Chen, L. C.; Zhu, W. Q. Stationary response of strongly non-linear oscillator with fractional derivative damping under bounded noise excitation, Int. J. Non-Linear Mech., Volume 47 (2012), pp. 1081-1087

[8] Huang, Z. L.; Zhu, W. Q.; Ni, Y. Q.; Ko, J. M. Stochastic averaging of strongly non-Linear oscillators under bounded noise excitation, J. Sound Vibr., Volume 254 (2002), pp. 245-267

[9] Jian, D. Higher-order stochastic averaging for a SDOF fractional viscoelastic system under bounded noise excitation, J. Franklin Inst., Volume 354 (2017), pp. 7917-7945

[10] Jiang, W. A.; Sun, P.; Xia, Z. W. Probabilistic solution of the vibratory energy harvester excited by Gaussian white noise, Int. J. Dyn. Control, Volume 7 (2019), pp. 167-177

[11] Jin, Y.; Zhang, Y. Dynamics of a delayed Duffing-type energy harvester under narrow-band random excitation, Acta Mech., Volume 232 (2021), pp. 1045-1060

[12] Kumar, A.; Ali, S. F.; Arockiarajan, A. Exploring the benefits of an asymmetric monostable potential function in broadband vibration energy harvesting, Appl. phys. lett., Volume 112 (2018), pp. 1-23

[13] Li, H.; Qin, W.; Lan, C.; Deng, W.; Zhou, Z. Dynamics and coherence resonance of tristable energy harvesting system, Smart Mater. Struc., Volume 25 (2016), pp. 1-11

[14] Liu, D.; Wu, Y.; Xu, Y.; Li, J. Stochastic response of bistable vibration energy harvesting system subject to filtered Gaussian white noise, Mech. Syst. Signal Process., Volume 130 (2019), pp. 201-212

[15] Liu, D.; Xu, Y.; Li, J. Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise, Chaos Solitons Fractals, Volume 104 (2017), pp. 806-812

[16] Liu, Z. H.; Zhu, W. Q. Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos Solitons Fractals, Volume 20 (2004), pp. 593-607

[17] Liu, W. Y.; Zhu, W. Q.; Huang, Z. L. Effect of bounded noise on chaotic motion of duffing oscillator under parametric excitation, Chaos Solitons Fractals, Volume 12 (2001), pp. 527-537

[18] Lopes, V. G.; Peterson, J. V. L. L.; Jr, A. Cunha Nonlinear characterization of a bistable energy harvester dynamical system, In: Topics in Nonlinear Mechanics and Physics, Volume 2019 (2019), pp. 71-88

[19] Mathuna, C. O.; O'Donnell, T.; Martinez-Catala, R. V.; Rohan, J.; O'Flynn, B. Energy scavenging for long-term deployable wireless sensor networks, Talanta, Volume 75 (2008), pp. 613-623

[20] Panyam, M.; Daqaq, M. F. Characterizing the effective bandwidth of tri-stable energy harvesters, J. Sound Vibr., Volume 386 (2017), pp. 336-358

[21] Ramakrishnan, S.; Edlund, C. Stochastic stability of a piezoelectric vibration energy harvester under a parametric excitation and noise-induced stabilization, Mech. Syst. Signal Process., Volume 140 (2020), pp. 1-10

[22] Rong, H. W.; Wang, X. D.; Meng, G.; Xu, W.; Fang, T. Response of nonlinear oscillator under narrow-band random excitation, Appl. Math. Mech., Volume 24 (2003), pp. 817-825

[23] Roundy, S.; Wright, P. K. A piezoelectric vibration based generator for wireless electronics, Smart Mater. Struct., Volume 13 (2004), pp. 1131-1142

[24] Wang, W.; Cao, J.; Bowen, C. R.; Zhang, Y.; Lin, J. Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters, Nonlinear Dyn., Volume 94 (2018), pp. 1183-1194

[25] Xiao, S.; Jin, Y. Response analysis of the piezoelectric energy harvester under correlated white noise, Nonlinear Dyn., Volume 90 (2017), pp. 2069-2082

[26] Yang, X.; Xu, W.; Sun, Z.; Fang, T. Effect of bounded noise on chaotic motion of a triple-well potential system, Chaos Solitons Fractals, Volume 25 (2005), pp. 415-424

[27] Yang, Z.; Zhu, Y.; Zu, J. Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations, Smart Mater. Struct., Volume 24 (2015), pp. 1-025028

[28] Yang, Z.; Zu, J. High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism, Energy Conversion and Management, Volume 88 (2014), pp. 829-833

[29] Yue, X.; Xu, W. Stochastic bifurcation of an asymmetric single-well potential duffing oscillator under bounded noise excitation, Int. J. Bifurcat. Chaos, Volume 20 (2010), pp. 3359-3371

[30] Zhao, L.; Tang, L.; Yang, Y. Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester, Smart Mater. Struct., Volume 22 (2013), pp. 1-12

[31] Zhou, S.; Cao, J.; Inman, D. J.; Lin, J.; Li, D. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement, Journal of Sound and Vibration, Volume 373 (2016), pp. 223-235

[32] Zhou, S.; Cao, J.; Inman, D. J.; Lin, J.; Liu, S.; Wang, Z. Broadband tristable energy harvester: Modeling and experiment verification, Appl. Energy, Volume 133 (2014), pp. 33-39

[33] Zhou, S.; Zuo, L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting, Commun. Nonlinear Sci. Numer. Simul., Volume 61 (2018), pp. 271-284

[34] Zhu, W. Q.; Cai, G. Q.; Hu, R. C. Stochastic analysis of dynamical system with double-well potential, Int. J. Dyn. Control, Volume 1 (2013), pp. 12-19

[35] Zhu, . Q.; Huang, Z. L.; Ko, J. M.; Ni, Y. Q. Optimal feedback control of strongly non-linear systems excited by bounded noise, J. Sound Vibr., Volume 274 (2004), pp. 701-724

Cité par Sources :