On a Wiener-Poisson equation with rapidly fluctuating coefficients: application to large deviations
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 440-451.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we deal with a stochastic differential equation with fast oscillating coefficients and with respect to a Brownian motion and a Poisson random measure. The large deviation principle of solution is established, and the effect of the highly nonlinear and locally periodic coefficients is stated. Moreover, we derive an explicit expression for the action functional when the viscosity parameter $\varepsilon$ is of order $1$ while the homogenization parameter $\delta_{\varepsilon}$ tends to zero.
DOI : 10.22436/jnsa.014.06.06
Classification : 35B27, 35K57, 60F10, 60H15
Keywords: Large deviation principle, homogenization, Levy process, Legendre-Fenchel transform

Coulibaly, Alioune  1 ; Allaya, Mouhamad Mounirou  2

1 Amadou Mahtar Mbow University of Dakar, Senegal
2 Iba Der Thiam University of Thies, Senegal
@article{JNSA_2021_14_6_a5,
     author = {Coulibaly, Alioune  and Allaya, Mouhamad Mounirou },
     title = {On a {Wiener-Poisson} equation with rapidly fluctuating coefficients:  application to large deviations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {440-451},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2021},
     doi = {10.22436/jnsa.014.06.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.06/}
}
TY  - JOUR
AU  - Coulibaly, Alioune 
AU  - Allaya, Mouhamad Mounirou 
TI  - On a Wiener-Poisson equation with rapidly fluctuating coefficients:  application to large deviations
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 440
EP  - 451
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.06/
DO  - 10.22436/jnsa.014.06.06
LA  - en
ID  - JNSA_2021_14_6_a5
ER  - 
%0 Journal Article
%A Coulibaly, Alioune 
%A Allaya, Mouhamad Mounirou 
%T On a Wiener-Poisson equation with rapidly fluctuating coefficients:  application to large deviations
%J Journal of nonlinear sciences and its applications
%D 2021
%P 440-451
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.06/
%R 10.22436/jnsa.014.06.06
%G en
%F JNSA_2021_14_6_a5
Coulibaly, Alioune ; Allaya, Mouhamad Mounirou . On a Wiener-Poisson equation with rapidly fluctuating coefficients:  application to large deviations. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 440-451. doi : 10.22436/jnsa.014.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.06/

[1] Applebaum, D. Levy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2004 | DOI

[2] Baldi, P. Large deviations for diffusions processes with homogenization applications, Ann. Probab., Volume 19 (1991), pp. 509-524

[3] Baxendale, P. H.; Stroock, D. W. Large deviations and stochastic flows of diffeomorphisms, Probab. Theory Related Fields, Volume 80 (1988), pp. 169-215 | DOI

[4] Benchérif-Madani, A.; Pardoux, É. Homogenization of a diffusion with locally periodic coefficients, Springer, Berlin, 2005 | DOI

[5] Dembo, A.; Zeitouni, O. Large deviations techniques and applications, Jones and Bartlett Publishers, Boston, 1993 | Zbl

[6] Dupuis, P.; Spiliopoulos, K. Large deviations for multiscale diffusion via weak convergence methods, Stochastic Process. Appl., Volume 122 (2012), pp. 1947-1987 | DOI

[7] Freidlin, M. I.; Sowers, R. B. A comparison of homogenization and large deviations, with applications to wavefront propagation, Stochastic Process. Appl., Volume 82 (1999), pp. 23-52 | DOI

[8] Ikeda, N.; Watanabe, S. Stochastic differential equations and diffusion processes, North-Holland, New York, 1981

[9] Kushner, H. J. Large deviations for two-time-scale diffusions, with delays, Appl. Math. Optim., Volume 62 (2010), pp. 295-322 | DOI

[10] Manga, C.; Coulibaly, A.; Diedhiou, A. On Jumps Stochastic Evolution Equations With Application of Homogenization and Large Deviations, J. Math. Res., Volume 11 (2019), pp. 125-134

[11] Manga, C.; Coulibaly, A.; Diedhiou, A. On some stochastic differential equations with jumps subject to small positives coefficients, AIMS Math.,, Volume 5 (2019), pp. 1369-1385 | DOI

[12] Pardoux, E.; Veretennikov, A. Y. On the Poisson equation and diffusion approximation, I, Ann. Probab., Volume 29 (2001), pp. 1061-1085 | DOI

[13] Pardoux, E.; Veretennikov, A. Y. On the Poisson equation and diffusion approximation. II, Ann. Probab., Volume 31 (2003), pp. 1166-1192

[14] Pei, B.; Xu, Y. Mild solutions of local non-Lipschitz stochastic evolution equations with jumps, Appl. Math. Lett.,, Volume 52 (2016), pp. 80-86 | DOI

[15] Rockner, M.; Zhang, T. Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., Volume 26 (2007), pp. 255-279 | DOI

[16] Wu, J. Uniform large deviations for multivalued stochastic differential equations with Poisson jumps, Kyoto J. Math., Volume 51 (2011), pp. 535-559 | DOI

[17] Xu, Y.; Duan, J.; Xu, W. An averaging principle for stochastic dynamical systems with Levy noise, Phys. D, Volume 240 (2011), pp. 1395-1401 | DOI

[18] Xu, Y.; Pei, B.; Guo, G. Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Levy noise, Appl. Math. Comput., Volume 263 (2015), pp. 398-409 | DOI

[19] Xu, Y.; Pei, B.; Li, Y. Approximation properties for solutions to non-Lipschitz stochastic differential equations with Levy noise, Math. Methods Appl. Sci., Volume 38 (2015), pp. 2120-2131 | DOI

[20] Veretennikov, A. Y. On large deviations for SDEs with small diffusion and averaging, Stochastic Process. Appl., Volume 89 (2000), pp. 69-79 | DOI

[21] Zhao, H. Y.; Xu, S. Y. Freidlin-Wentzell’s Large Deviations for Stochastic Evolution Equations with Poisson Jumps, Adv. Pure Math., Volume 6 (2016), pp. 676-694

Cité par Sources :