Approximation degree of bivariate Kantorovich Stancu operators
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 423-439.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Abel et al. [U. Abel, M. Ivan, R. Paltanea, Appl. Math. Comput., $\bf 259$ (2015), 116--123] introduced a Durrmeyer type integral variant of the Bernstein type operators based on two parameters defined by Stancu [D. D. Stancu, Calcolo, $\bf 35$ (1998), 53--62]. Kajla [A. Kajla, Appl. Math. Comput., $\bf 316$ (2018), 400--408] considered a Kantorovich modification of the Stancu operators wherein he studied some basic convergence theorems and also the rate of $A$-statistical convergence. In the present paper, we define a bivariate case of the operators proposed in [A. Kajla, Appl. Math. Comput., $\bf 316$ (2018), 400--408] to study the degree of approximation for functions of two variables. We obtain the rate of convergence of these bivariate operators by means of the complete modulus of continuity, the partial moduli of continuity and the Peetre's $K$-functional. Voronovskaya and Gruss Voronovskaya type theorems are also established. We introduce the associated GBS (Generalized Boolean Sum) operators of the bivariate operators and discuss the approximation degree of these operators with the aid of the mixed modulus of smoothness for Bogel continuous and Bogel differentiable functions.
DOI : 10.22436/jnsa.014.06.05
Classification : 41A10, 41A25, 41A30, 41A63, 26A15
Keywords: Modulus of continuity, Peetre's \(K\)-functional, GBS operator, B-continuous function, mixed modulus of smoothness

Agrawal, P. N. 1 ; Bhardwaj, Neha  2 ; Singh, Jitendra Kumar  1

1 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, India
2 Department of Applied Mathematics, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, India
@article{JNSA_2021_14_6_a4,
     author = {Agrawal, P. N. and Bhardwaj, Neha  and Singh, Jitendra Kumar },
     title = {Approximation degree of bivariate {Kantorovich} {Stancu} operators},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {423-439},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2021},
     doi = {10.22436/jnsa.014.06.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.05/}
}
TY  - JOUR
AU  - Agrawal, P. N.
AU  - Bhardwaj, Neha 
AU  - Singh, Jitendra Kumar 
TI  - Approximation degree of bivariate Kantorovich Stancu operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 423
EP  - 439
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.05/
DO  - 10.22436/jnsa.014.06.05
LA  - en
ID  - JNSA_2021_14_6_a4
ER  - 
%0 Journal Article
%A Agrawal, P. N.
%A Bhardwaj, Neha 
%A Singh, Jitendra Kumar 
%T Approximation degree of bivariate Kantorovich Stancu operators
%J Journal of nonlinear sciences and its applications
%D 2021
%P 423-439
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.05/
%R 10.22436/jnsa.014.06.05
%G en
%F JNSA_2021_14_6_a4
Agrawal, P. N.; Bhardwaj, Neha ; Singh, Jitendra Kumar . Approximation degree of bivariate Kantorovich Stancu operators. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 423-439. doi : 10.22436/jnsa.014.06.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.05/

[1] Abel, U.; Ivan, M.; Păltănea, R. The Durrmeyer variant of an operator defined by DD Stancu, Appl. Math. Comput., Volume 259 (2015), pp. 116-123 | DOI

[2] Agrawal, P. N.; Ispir, N.; Kajla, A. GBS operators of Lupa¸s-Durrmeyer type based on Polya distribution, Results Math., Volume 69 (2016), pp. 397-418 | DOI

[3] Anastassiou, G. A.; Gal, S. G. Approximation Theory:Moduli of Continuity and Global Smoothness Preservation, Birkhauser, Boston, 2000

[4] Badea, C.; Badea, I.; Cottin, C.; Gonska, H. H. Notes on the degree of approximation of B-continuous and B-differentiable functions, Approx. Theory Appl., Volume 4 (1988), pp. 95-108

[5] Badea, C.; Badea, I.; Gonska, H. H. A test function theorem and approximation by pseudo polynomials, Bull. Aust. Math. Soc., Volume 34 (1986), pp. 53-64 | DOI

[6] Badea, C.; Cottin, C. Korovkin-type theorems for generalized Boolean sum operators, Colloq. Math. Soc. Janos Bolyai,, Volume 58 (1991), pp. 51-68

[7] Bögel, K. Mehrdimensionale Differentiation von Funktionen mehrer reeller Ver¨anderlichen, J. Reine Angew. Math., Volume 170 (1934), pp. 197-217 | DOI

[8] Bögel, K. Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew Math., Volume 173 (1935), pp. 5-23 | DOI

[9] Bögel, K. Über die mehrdimensionale Differentiation, Jber. Deutsch. Math.-Verein., Volume 65 (1962/63), pp. 45-71

[10] Butzer, P. L.; Berens, H. Semi-groups of operators and approximation, Springer-Verlag, New York, 1967

[11] Deo, N.; Bhardwaj, N. Some approximation theorems for multivariate Bernstein operators, Southeast Asian Bull. Math., Volume 34 (2010), pp. 1023-1034

[12] Gupta, V.; Rassias, T. M.; Agrawal, P. N.; Acu, A. M. Recent Advances in Constructive Approximation Theory, Springer, Cham, 2018 | DOI

[13] Kajla, A. The Kantorovich variant of an operator defined by D. D. Stancu, Appl. Math. Comput., Volume 316 (2018), pp. 400-408 | DOI

[14] Kajla, A.; Ispir, N.; Agrawal, P. N.; Goyal, M. q-Bernstein-Schurer-Durrmeyer type operators for functions of one and two variables, Appl. Math. Comput., Volume 275 (2016), pp. 372-385 | DOI

[15] Stancu, D. D. Some Bernstein polynomials in two variables and their applications, Soviet Math., Volume 1 (1961), pp. 1025-1028

[16] Stancu, D. D. The remainder in the approximation by a generalized Bernstein operator : a representation by a convex combination of second-order divided differences, Calcolo, Volume 35 (1998), pp. 53-62 | DOI

[17] Volkov, V. I. On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk SSSR, Volume 115 (1957), pp. 17-19

[18] Zhou, D.-X. Inverse theorems for multidimensional Bernstein-Durrmeyer operators in $L_p$, J. Approx. Theory, Volume 70 (1992), pp. 68-93 | DOI

Cité par Sources :