Voir la notice de l'article provenant de la source International Scientific Research Publications
Agrawal, P. N. 1 ; Bhardwaj, Neha  2 ; Singh, Jitendra Kumar  1
@article{JNSA_2021_14_6_a4, author = {Agrawal, P. N. and Bhardwaj, Neha and Singh, Jitendra Kumar }, title = {Approximation degree of bivariate {Kantorovich} {Stancu} operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {423-439}, publisher = {mathdoc}, volume = {14}, number = {6}, year = {2021}, doi = {10.22436/jnsa.014.06.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.05/} }
TY - JOUR AU - Agrawal, P. N. AU - Bhardwaj, Neha AU - Singh, Jitendra Kumar TI - Approximation degree of bivariate Kantorovich Stancu operators JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 423 EP - 439 VL - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.05/ DO - 10.22436/jnsa.014.06.05 LA - en ID - JNSA_2021_14_6_a4 ER -
%0 Journal Article %A Agrawal, P. N. %A Bhardwaj, Neha %A Singh, Jitendra Kumar %T Approximation degree of bivariate Kantorovich Stancu operators %J Journal of nonlinear sciences and its applications %D 2021 %P 423-439 %V 14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.05/ %R 10.22436/jnsa.014.06.05 %G en %F JNSA_2021_14_6_a4
Agrawal, P. N.; Bhardwaj, Neha ; Singh, Jitendra Kumar . Approximation degree of bivariate Kantorovich Stancu operators. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 423-439. doi : 10.22436/jnsa.014.06.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.05/
[1] The Durrmeyer variant of an operator defined by DD Stancu, Appl. Math. Comput., Volume 259 (2015), pp. 116-123 | DOI
[2] GBS operators of Lupa¸s-Durrmeyer type based on Polya distribution, Results Math., Volume 69 (2016), pp. 397-418 | DOI
[3] Approximation Theory:Moduli of Continuity and Global Smoothness Preservation, Birkhauser, Boston, 2000
[4] Notes on the degree of approximation of B-continuous and B-differentiable functions, Approx. Theory Appl., Volume 4 (1988), pp. 95-108
[5] A test function theorem and approximation by pseudo polynomials, Bull. Aust. Math. Soc., Volume 34 (1986), pp. 53-64 | DOI
[6] Korovkin-type theorems for generalized Boolean sum operators, Colloq. Math. Soc. Janos Bolyai,, Volume 58 (1991), pp. 51-68
[7] Mehrdimensionale Differentiation von Funktionen mehrer reeller Ver¨anderlichen, J. Reine Angew. Math., Volume 170 (1934), pp. 197-217 | DOI
[8] Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew Math., Volume 173 (1935), pp. 5-23 | DOI
[9] Über die mehrdimensionale Differentiation, Jber. Deutsch. Math.-Verein., Volume 65 (1962/63), pp. 45-71
[10] Semi-groups of operators and approximation, Springer-Verlag, New York, 1967
[11] Some approximation theorems for multivariate Bernstein operators, Southeast Asian Bull. Math., Volume 34 (2010), pp. 1023-1034
[12] Recent Advances in Constructive Approximation Theory, Springer, Cham, 2018 | DOI
[13] The Kantorovich variant of an operator defined by D. D. Stancu, Appl. Math. Comput., Volume 316 (2018), pp. 400-408 | DOI
[14] q-Bernstein-Schurer-Durrmeyer type operators for functions of one and two variables, Appl. Math. Comput., Volume 275 (2016), pp. 372-385 | DOI
[15] Some Bernstein polynomials in two variables and their applications, Soviet Math., Volume 1 (1961), pp. 1025-1028
[16] The remainder in the approximation by a generalized Bernstein operator : a representation by a convex combination of second-order divided differences, Calcolo, Volume 35 (1998), pp. 53-62 | DOI
[17] On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk SSSR, Volume 115 (1957), pp. 17-19
[18] Inverse theorems for multidimensional Bernstein-Durrmeyer operators in $L_p$, J. Approx. Theory, Volume 70 (1992), pp. 68-93 | DOI
Cité par Sources :