Voir la notice de l'article provenant de la source International Scientific Research Publications
Huban, Mualla Birgul  1
@article{JNSA_2021_14_6_a3, author = {Huban, Mualla Birgul }, title = {Generalized statistically {pre-Cauchy} triple sequences via {Orlicz} functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {414-422}, publisher = {mathdoc}, volume = {14}, number = {6}, year = {2021}, doi = {10.22436/jnsa.014.06.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.04/} }
TY - JOUR AU - Huban, Mualla Birgul TI - Generalized statistically pre-Cauchy triple sequences via Orlicz functions JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 414 EP - 422 VL - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.04/ DO - 10.22436/jnsa.014.06.04 LA - en ID - JNSA_2021_14_6_a3 ER -
%0 Journal Article %A Huban, Mualla Birgul %T Generalized statistically pre-Cauchy triple sequences via Orlicz functions %J Journal of nonlinear sciences and its applications %D 2021 %P 414-422 %V 14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.04/ %R 10.22436/jnsa.014.06.04 %G en %F JNSA_2021_14_6_a3
Huban, Mualla Birgul . Generalized statistically pre-Cauchy triple sequences via Orlicz functions. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 414-422. doi : 10.22436/jnsa.014.06.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.04/
[1] Statistically pre-Cauchy sequences, Analysis, Volume 14 (1994), pp. 311-317 | DOI
[2] Some further results on I-Cauchy sequences and condition (AP), Comput. Math. Appl.,, Volume 59 (2010), pp. 2597-2600 | DOI
[3] ON I-STATISTICALLY PRE-CAUCHY SEQUENCES, Taiwanese J. Math., Volume 18 (2014), pp. 115-126
[4] On generalizations of certain summability methods using ideals, Appl. Math. Lett., Volume 24 (2011), pp. 1509-1514 | DOI
[5] I-limit superior and limit inferior, Math. Commun, Volume 6 (2001), pp. 165-172
[6] On triple sequence spaces of $X^3$, World Sci. News, Volume 95 (2018), pp. 159-166
[7] On triple sequence space of Bernstein operator of rough I-convergence pre-Cauchy sequences, Proyecciones, Volume 36 (2017), pp. 567-587 | DOI
[8] Sur la convergence statistique, Colloq. Math., Volume 2 (1951), pp. 241-244 | DOI
[9] Densities and summability, Pacific J. Math., Volume 95 (1981), pp. 293-305
[10] On statistical convergence, Analysis, Volume 5 (1985), pp. 301-313 | DOI
[11] SStatistically pre-Cauchy sequences and bounded moduli, Acta Comment. Univ. Tartu. Math., Volume 7 (2003), pp. 3-7
[12] Some types of convergence, Doctoral Diss, S. Demirel Univ., Isparta, 2004
[13] On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl., Volume 11 (2008), pp. 349-354 | DOI
[14] Extremal I-limit points of double sequences, Appl. Math. E-Notes, Volume 8 (2008), pp. 131-137
[15] On I-convergence of double sequences in the topology induced by random 2-norms, Mat. Vesnik,, Volume 66 (2014), pp. 73-83 | EuDML
[16] Statistical convergence and $C^∗$-operator algebras, Theory Appl. Math. Comput. Sci., Volume 7 (2017), pp. 41-50
[17] Lacunary ideal quasi Cauchy sequences, An. Univ. Craiova Ser. Mat. Inform., Volume 45 (2018), pp. 220-231
[18] Korovkin-type approximation theorem for Bernstein operator of rough statistical convergence of triple sequences, Adv. Oper. Theory, Volume 5 (2020), pp. 324-335 | DOI
[19] Wijsman lacunary invariant statistical convergence for triple sequences via Orlicz function, J. Classical Anal., Volume 2021 (2021)
[20] On asymptotically lacunary statistical equivalent triple sequences via ideals and Orlicz function, Honam Math. J., Volume 2021 (2021)
[21] I-statistical limit superior and I-statistical limit inferior of triple sequences, 7th International Conference on Recent Advances in Pure and Applied Mathematics, Proceeding Book of ICRAPAM, Volume 2020 (2020), pp. 42-49
[22] On the Borel summability method for convergence of triple sequences of Bernstein-Stancu operators of fuzzy numbers, Soft Comput., Volume 25 (2021), pp. 683-697 | DOI
[23] I-pre-Cauchy double sequences and Orlicz functions, Engineering, Volume 5 (2013), pp. 52-56
[24] I-convergence, Real Anal. Exchange, Volume 26 (2000-2001), pp. 669-685 | DOI
[25] Strongly I and $I^∗$-statistically pre-Cauchy double sequences in probabilistic metric spaces, Mat. Vesnik, Volume 2 (2018), pp. 97-109
[26] On I-Cauchy sequences, Taiwanese J. Math., Volume 11 (2007), pp. 569-576
[27] Orlicz-Quasi-Cauchy double sequence spaces for RH-regular matrix, J. Class. Anal., Volume 10 (2017), pp. 67-76 | DOI
[28] Applications of Orlicz spaces, Marcel Dekker, Marcel Dekker, 2002
[29] New sequence spaces in n-normed spaces with respect to an Orlicz function, Aligarh Bull. Maths, Volume 27 (2008), pp. 53-58
[30] Triple sequences and their statistical convergence, Selc¸uk J. Appl. Math., Volume 8 (2007), pp. 49-55
[31] Ideal convergence in 2-normed spaces, Taiwanese J. Math., Volume 11 (2007), pp. 1477-1484
[32] Ideal convergence characterization of the completion of linear n-normed spaces, Comput. Math. Appl., Volume 61 (2011), pp. 683-689 | DOI
[33] Some I-related Properties of Triple Sequence, Selc¸uk J. Appl. Math., Volume 9 (2008), pp. 9-18
[34] On statistically convergent sequences of real numbers, Math. Slovaca, Volume 30 (1980), pp. 139-150
[35] On some properties of I-convergence, Tatra Mt. Math. Publ., Volume 28 (2004), pp. 279-286
[36] Multiple λµ-statistically convergence via φe-functions, Math. Methods Appl. Sci., Volume 2020 (2020), pp. 1-8
[37] A generalized statistical convergence via ideals, Appl. Math. Lett., Volume 24 (2011), pp. 826-830 | DOI
[38] Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces, J. Intell. Fuzzy Syst., Volume 27 (2014), pp. 2067-2075 | DOI
[39] A generalized statistical convergence in intuitionistic fuzzy normed spaces, ScienceAsia, Volume 41 (2015), pp. 289-294
[40] The integrability of certain functions and related sumability methods, Amer. Math. Monthly, Volume 66 (1959), pp. 361-375 | DOI
[41] Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., Volume 2 (1951), pp. 73-74
[42] I-statistical convergence in 2-normed space, Arab J. Math. Sci., Volume 20 (2014), pp. 41-47 | DOI
[43] I -statistically pre-Cauchy double sequences, Glob. J. Math. Anal., Volume 2 (2014), pp. 297-303
[44] Trigonometric Series, Cambridge Univ. Press, Cambridge, 1979
Cité par Sources :