Controllability of nonlocal impulsive functional differential equations with measure of noncompactness in Banach spaces
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 400-413.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper is concerned with the controllability of impulsive differential equations with nonlocal conditions. First, we establish a property of measure of noncompactness in the space of piecewise continuous functions. Then, by using this property and Darbo-Sadovskii's fixed point theorem, we get the controllability of nonlocal impulsive differential equations under compactness conditions, Lipschitz conditions, and mixed-type conditions, respectively.
DOI : 10.22436/jnsa.014.06.03
Classification : 34K30, 34K35, 35R10, 60G99, 93C10
Keywords: Controllability, impulsive differential equations, nonlocal conditions, measure of non compactness, fixed point theorem

Chalishajar, D. N.  1 ; Karthikeyan, K. 2 ; Tamizharasan, D.  3

1 Department of Applied Mathematics, Virginia Military Institute (VMI), 435, Mallory Hall, Lexington, VA 24450, USA
2 Department of Mathematics \(\&\) Centre for Research and Development, KPR Institute of Engineering and Technology, Coimbatore- 641 407, Tamil Nadu, India
3 Department of Mathematics, KSR College of Technology, Tiruchengode 637 215, Tamilnadu, India
@article{JNSA_2021_14_6_a2,
     author = {Chalishajar, D. N.  and Karthikeyan, K. and Tamizharasan, D. },
     title = {Controllability of nonlocal impulsive functional  differential equations with measure of noncompactness in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {400-413},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2021},
     doi = {10.22436/jnsa.014.06.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.03/}
}
TY  - JOUR
AU  - Chalishajar, D. N. 
AU  - Karthikeyan, K.
AU  - Tamizharasan, D. 
TI  - Controllability of nonlocal impulsive functional  differential equations with measure of noncompactness in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 400
EP  - 413
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.03/
DO  - 10.22436/jnsa.014.06.03
LA  - en
ID  - JNSA_2021_14_6_a2
ER  - 
%0 Journal Article
%A Chalishajar, D. N. 
%A Karthikeyan, K.
%A Tamizharasan, D. 
%T Controllability of nonlocal impulsive functional  differential equations with measure of noncompactness in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2021
%P 400-413
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.03/
%R 10.22436/jnsa.014.06.03
%G en
%F JNSA_2021_14_6_a2
Chalishajar, D. N. ; Karthikeyan, K.; Tamizharasan, D. . Controllability of nonlocal impulsive functional  differential equations with measure of noncompactness in Banach spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 400-413. doi : 10.22436/jnsa.014.06.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.03/

[1] Abada, N.; Benchohra, M.; Hammouche, H. Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations, Volume 246 (2009), pp. 3834-3863

[2] Agarwal, R. P.; Benchohra, M.; Seba, D. On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., Volume 55 (2009), pp. 221-230

[3] Ahamed, B.; Malar, K.; Karthikeyan, K. A study of nonlocal problems of impulsive integrodifferential equations with measure of noncompactness, Adv. Difference Equ., Volume 2013 (2013), pp. 1-11

[4] Bainov, D.; Simeonov, P. Impulsive differential equations: Periodic solutions and applications, Longman Scientific & Technical, Harlow, New York, 1993

[5] Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980

[6] Benchohra, M.; Henderson, J.; Ntouyas, S. K. An existence result for first-order impulsive functional differential equations in Banach spaces, Comput. Math. Appl., Volume 42 (2001), pp. 1303-1310

[7] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Hindawi Publishing Corporation, New York, 2006 | Zbl

[8] Byszewski, L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., Volume 162 (1991), pp. 494-505

[9] Chalishajar, D. N. Controllability of Impulsive Partial Neutral Funcional Differential Equation with Infinite Delay, Int. J. Math. Anal., Volume 5 (2011), pp. 369-380

[10] Chalishajar, D. N.; Acharya, F. S. Controllability of neutral impulsive differential inclusions with non-local conditions, Appl. Math., Volume 2 (2011), pp. 1486-1496

[11] Chang, Y. K. Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos Solitons Fractals, Volume 33 (2007), pp. 1601-1609

[12] Chen, L. Z.; Li, G. Approximate Controllability of Impulsive Differential Equations with Nonlocal Conditions, Int. J. Nonlinear Sci., Volume 10 (2010), pp. 438-446

[13] Dong, Q.; Li, G. Existence of solutions for semilinear differential equations with nonlocal conditions in Banach spaces, Electron. J. Qual. Theory Differ. Equ., Volume 2009 (2009), pp. 1-13

[14] Dutkiewicz, A. On the Kneser-Hukuhara property for an integro-differential equation in Banach spaces, Tatra Mt. Math. Publ., Volume 48 (2011), pp. 51-59

[15] Fitzgibbon, W. Semilinear integrodifferential equations in Banach space, Nonlinear Anal. Theory, Methods Appl., Volume 4 (1980), pp. 745-760

[16] Guo, M.; Xue, X.; Li, R. Controllability of impulsive evolution inclusions with nonlocal conditions, J. Optim. Theory Appl., Volume 120 (2004), pp. 355-374

[17] Hernandez, E.; Rabelo, M.; Henriquez, H. R. Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., Volume 331 (2007), pp. 1135-1158

[18] Ji, S. C.; Li, G. Existence results for impulsive differential inclusions with nonlocal conditions, Comput. Math. Appl., Volume 62 (2011), pp. 1908-1915

[19] Ji, S.; Li, G. A unified approach to nonlocal impulsive differential equations with the measure of noncompactness, Adv. Difference Equ., Volume 2012 (2012), pp. 1-14

[20] Ji, S. C.; Wen, S. Nonlocal Cauchy problem for impulsive differential equations in Banach spaces, Int. J. Nonlinear Sci., Volume 10 (2010), pp. 88-95

[21] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific Publishing Co., Teaneck, 1989

[22] Li, S. C.; Li, G.; Wang, M. Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput., Volume 217 (2011), pp. 6981-6989

[23] Li, J. L.; Nieto, J. J.; Shen, J. H. Impulsive periodic boundary value problems of first-order differential equations, J. Math. Anal. Appl., Volume 325 (2007), pp. 226-236

[24] Liang, J.; Liu, J. H.; Xiao, T.-J. Nonlocal Impulsive Problems for Nonlinear Differential Equations in Banach Spaces, Math. Comput. Modelling, Volume 49 (2009), pp. 798-804 | Zbl | DOI

[25] Liu, B. Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Anal., Volume 60 (2005), pp. 1533-1552

[26] Liu, L. S.; Guo, F.; Wu, C. X.; Wu, Y. H. Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., Volume 309 (2005), pp. 638-649

[27] Obukhovski, V.; Zecca, P. Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Anal., Volume 70 (2009), pp. 3424-3436

[28] Quinn, M. D.; Carmichael, N. An approach to non-linear control problems using fixed point methods, degree theory and pseudo inverses, Numer. Func. Anal. Optim., Volume 7 (1985), pp. 197-219

[29] Schmeidel, E. An application of measures of noncompactness in investigation of boundedness of solutions of second order neutral difference equations, Adv. Difference Equ., Volume 2013 (2013), pp. 1-9

[30] Selvi, S.; Arjunan, M. M. Controllability Results for Impulsive Differential Systems with Finite Delay, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 206-219 | Zbl

[31] Sun, J.; Zhang, X. The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations, Acta Math. Sinica (Chin. Ser.), Volume 48 (2005), pp. 439-446

[32] Xue, X. M. Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces, Nonlinear Anal., Volume 70 (2009), pp. 2593-2601

[33] Zhu, L. P.; Dong, Q.; Li, G. Impulsive differential equations with nonlocal conditionsin general Banach spaces, Adv. Difference Equ., Volume 2012 (2012), pp. 1-11

Cité par Sources :