Ground state solutions for a class of quasilinear Choquard equation with critical growth
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 390-399.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider the following quasilinear Choquard equation with critical nonlinearity
$ \begin{cases} -\triangle u+V(x)u-u\triangle u^{2}=(I_{\alpha}\ast|u|^{p})|u|^{p-2}u+u^{2(2^{\ast})-2}u,x\in\mathbb{R}^{N}, \\ u>0,\in\mathbb{R}^{N}, \end{cases} $
where $I_{\alpha}$ is a Riesz potential, $0\alpha$, and $\frac{N+\alpha}{N}$, with $2^{\ast}=\frac{2N}{N-2}$. Under suitable assumption on $V$, we research the existence of positive ground state solutions of above equations. Moreover, we consider the ground state solution of the equation (1.4). Our work supplements many existing partial results in the literature.
DOI : 10.22436/jnsa.014.06.02
Classification : 35B09, 35J20
Keywords: Quasilinear equation, variational methods, ground state solution, Choquard type

Shao, Liuyang  1 ; Chen, Haibo  2 ; Wang, Yingmin  1

1 School of Mathematics and Statistics, GuiZhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China
2 School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, P. R. China
@article{JNSA_2021_14_6_a1,
     author = {Shao, Liuyang  and Chen, Haibo  and Wang, Yingmin },
     title = {Ground state solutions for a class of quasilinear {Choquard} equation with critical growth},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {390-399},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2021},
     doi = {10.22436/jnsa.014.06.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.02/}
}
TY  - JOUR
AU  - Shao, Liuyang 
AU  - Chen, Haibo 
AU  - Wang, Yingmin 
TI  - Ground state solutions for a class of quasilinear Choquard equation with critical growth
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 390
EP  - 399
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.02/
DO  - 10.22436/jnsa.014.06.02
LA  - en
ID  - JNSA_2021_14_6_a1
ER  - 
%0 Journal Article
%A Shao, Liuyang 
%A Chen, Haibo 
%A Wang, Yingmin 
%T Ground state solutions for a class of quasilinear Choquard equation with critical growth
%J Journal of nonlinear sciences and its applications
%D 2021
%P 390-399
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.02/
%R 10.22436/jnsa.014.06.02
%G en
%F JNSA_2021_14_6_a1
Shao, Liuyang ; Chen, Haibo ; Wang, Yingmin . Ground state solutions for a class of quasilinear Choquard equation with critical growth. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 390-399. doi : 10.22436/jnsa.014.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.02/

[1] Alves, C. O.; Yang, M. Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys., Volume 55 (2014), pp. 1-21

[2] Alves, C. O.; Yang, M. Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc. Roy. Soc. Edinburgh Sect. A, Volume 146 (2016), pp. 23-58

[3] Bass, F. G.; Nasanov, N. N. Nonlinear electromagnetic spin waves, Phys. Rep., Volume 189 (1990), pp. 165-223

[4] Borovskii, A.; Galkin, A. Dynamic modulation of an ultrashort high-intensity laser pulse in matter, JETP, Volume 77 (1993), pp. 562-573

[5] Brezis, H.; Nirengerg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477

[6] Cao, D.; Peng, S. J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations, Volume 193 (2003), pp. 424-434

[7] Chen, J. H.; Cheng, B.; Huang, X. J. Ground state solutions for a class of quasilinear Schrodinger equations with Choquard type nonlinearity, Appl. Math. Lett., Volume 102 (2020), pp. 1-7

[8] Chen, S. X.; Wu, X. Existence of positive solutions for a class of quasilinear Schrodinger equations of Choquard type, J. Math. Anal. Appl., Volume 475 (2019), pp. 1754-1777

[9] Cingolani, S.; Clapp, M.; Secchi, S. Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., Volume 63 (2012), pp. 233-248

[10] Bouard, A. de; Hayashi, N.; Saut, J.-C. Global existence of small solutions to a relativistic nonlinear Schrodinger equation, Comm. Math. Phys., Volume 189 (1997), pp. 73-105

[11] O, J. M. do; Moameni, A. Solutions for singular quasilinear Schrodinger equations with one parameter, Commun. Pure. Appl. Anal., Volume 9 (2010), pp. 1011-1023

[12] Gloss, E. Existence and concentration of positive solutions for a quasilinear equation in $\mathbb{R}^{N}$, J. Math. Anal. Appl., Volume 371 (2010), pp. 465-484

[13] Hasse, R. W. A general method for the solution of nonlinear soliton and kink Schrodinger equations, Z. Phys. B, Volume 37 (1980), pp. 83-87

[14] Hirano, N.; Saccon, C.; Shioji, N. Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, Volume 245 (2008), pp. 1997-2037

[15] Ji, C.; Szulkin, A. A logarithmic Schrodinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl., Volume 437 (2016), pp. 241-254

[16] Kurihura, S. Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, Volume 50 (1981), pp. 3262-3267

[17] Laedke, E. W.; Spatschek, K. H.; Stenflo, L. Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., Volume 24 (1983), pp. 2764-2769

[18] Lange, H.; Poppenberg, M.; Teismann, H. Nash-Moser methods for the solution of quasilinear Schrodinger equations, Comm. Partial Differ. Equ., Volume 24 (1999), pp. 1399-1418

[19] Lange, H.; Toomire, B.; Zweifel, P. F. Time-dependent dissipation in nonlinear Schrodinger systems, J. Math. Phys., Volume 36 (1995), pp. 1274-1283

[20] Li, X. F.; Ma, S. W.; Zhang, G. Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Anal. Real World Appl., Volume 45 (2019), pp. 1-25

[21] Litvak, A.; Sergeev, A. On one dimensional collapse of plasma waves, JETP Lett., Volume 27 (1978), pp. 517-520

[22] Makhankov, V.; Fedyanin, V. Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., Volume 104 (1984), pp. 1-86

[23] Moroz, V.; Schaftingen, J. Van Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., Volume 265 (2013), pp. 153-184

[24] Moroz, V.; Schaftingen, J. Van Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 6557-6579

[25] Moroz, V.; Schaftingen, J. Van Groundstates of nonlinear Choquard equations Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., Volume 17 (2015), pp. 1-12

[26] Nakamura, A. Damping and modification of exciton solitary waves, J. Phys. Soc. Japan, Volume 42 (1977), pp. 1824-1835

[27] Poppenberg, M.; Schmitt, K.; Wang, Z.-Q. On the existence of soliton solutions to quasilinear Schrodinger equations, Calc. Var. Partial Differ. Equations, Volume 14 (2002), pp. 329-344

[28] Radulescu, V.; Smets, D.; Willem, M. Hardy-Sobolev inequalities with remainder terms, Topol. Methods Nonlinear Anal., Volume 20 (2002), pp. 145-149

[29] Silva, E. A. B.; Vieira, G. F. Quasilenear asymptotically periodic Schrodinger equations with critical growth, Calc. Var. Partial Differ. Equ., Volume 39 (2010), pp. 1-33

[30] Silva, E. A. B.; Vieira, G. F. Quasilinear asymptotically periodic Schrodinger equations with subcritical growth, Nonlinear Anal, Volume 72 (2010), pp. 2935-2949

[31] Szulkin, A.; Weth, T. The method of Nehari manifold, Hand book of nonconvex analysis and applications (Int. Press, Somerville), Volume 2010 (2010), pp. 597-632

[32] Willem, M. Minimax Theorems, Birkhuser Boston, Boston, 1996

[33] Yang, X. Y.; Zhang, W.; Zhao, F. Existence and muliplicity of solutions for a quasilinear Choquard equation via perturbation method, J. Math. Phys., Volume 59 (2018), pp. 1-10

Cité par Sources :