Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \begin{cases} -\triangle u+V(x)u-u\triangle u^{2}=(I_{\alpha}\ast|u|^{p})|u|^{p-2}u+u^{2(2^{\ast})-2}u,x\in\mathbb{R}^{N}, \\ u>0,\in\mathbb{R}^{N}, \end{cases} $ |
Shao, Liuyang  1 ; Chen, Haibo  2 ; Wang, Yingmin  1
@article{JNSA_2021_14_6_a1, author = {Shao, Liuyang and Chen, Haibo and Wang, Yingmin }, title = {Ground state solutions for a class of quasilinear {Choquard} equation with critical growth}, journal = {Journal of nonlinear sciences and its applications}, pages = {390-399}, publisher = {mathdoc}, volume = {14}, number = {6}, year = {2021}, doi = {10.22436/jnsa.014.06.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.02/} }
TY - JOUR AU - Shao, Liuyang AU - Chen, Haibo AU - Wang, Yingmin TI - Ground state solutions for a class of quasilinear Choquard equation with critical growth JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 390 EP - 399 VL - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.02/ DO - 10.22436/jnsa.014.06.02 LA - en ID - JNSA_2021_14_6_a1 ER -
%0 Journal Article %A Shao, Liuyang %A Chen, Haibo %A Wang, Yingmin %T Ground state solutions for a class of quasilinear Choquard equation with critical growth %J Journal of nonlinear sciences and its applications %D 2021 %P 390-399 %V 14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.02/ %R 10.22436/jnsa.014.06.02 %G en %F JNSA_2021_14_6_a1
Shao, Liuyang ; Chen, Haibo ; Wang, Yingmin . Ground state solutions for a class of quasilinear Choquard equation with critical growth. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 6, p. 390-399. doi : 10.22436/jnsa.014.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.06.02/
[1] Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys., Volume 55 (2014), pp. 1-21
[2] Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc. Roy. Soc. Edinburgh Sect. A, Volume 146 (2016), pp. 23-58
[3] Nonlinear electromagnetic spin waves, Phys. Rep., Volume 189 (1990), pp. 165-223
[4] Dynamic modulation of an ultrashort high-intensity laser pulse in matter, JETP, Volume 77 (1993), pp. 562-573
[5] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983), pp. 437-477
[6] A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations, Volume 193 (2003), pp. 424-434
[7] Ground state solutions for a class of quasilinear Schrodinger equations with Choquard type nonlinearity, Appl. Math. Lett., Volume 102 (2020), pp. 1-7
[8] Existence of positive solutions for a class of quasilinear Schrodinger equations of Choquard type, J. Math. Anal. Appl., Volume 475 (2019), pp. 1754-1777
[9] Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., Volume 63 (2012), pp. 233-248
[10] Global existence of small solutions to a relativistic nonlinear Schrodinger equation, Comm. Math. Phys., Volume 189 (1997), pp. 73-105
[11] Solutions for singular quasilinear Schrodinger equations with one parameter, Commun. Pure. Appl. Anal., Volume 9 (2010), pp. 1011-1023
[12] Existence and concentration of positive solutions for a quasilinear equation in $\mathbb{R}^{N}$, J. Math. Anal. Appl., Volume 371 (2010), pp. 465-484
[13] A general method for the solution of nonlinear soliton and kink Schrodinger equations, Z. Phys. B, Volume 37 (1980), pp. 83-87
[14] Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, Volume 245 (2008), pp. 1997-2037
[15] A logarithmic Schrodinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl., Volume 437 (2016), pp. 241-254
[16] Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, Volume 50 (1981), pp. 3262-3267
[17] Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., Volume 24 (1983), pp. 2764-2769
[18] Nash-Moser methods for the solution of quasilinear Schrodinger equations, Comm. Partial Differ. Equ., Volume 24 (1999), pp. 1399-1418
[19] Time-dependent dissipation in nonlinear Schrodinger systems, J. Math. Phys., Volume 36 (1995), pp. 1274-1283
[20] Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Anal. Real World Appl., Volume 45 (2019), pp. 1-25
[21] On one dimensional collapse of plasma waves, JETP Lett., Volume 27 (1978), pp. 517-520
[22] Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., Volume 104 (1984), pp. 1-86
[23] Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., Volume 265 (2013), pp. 153-184
[24] Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 6557-6579
[25] Groundstates of nonlinear Choquard equations Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., Volume 17 (2015), pp. 1-12
[26] Damping and modification of exciton solitary waves, J. Phys. Soc. Japan, Volume 42 (1977), pp. 1824-1835
[27] On the existence of soliton solutions to quasilinear Schrodinger equations, Calc. Var. Partial Differ. Equations, Volume 14 (2002), pp. 329-344
[28] Hardy-Sobolev inequalities with remainder terms, Topol. Methods Nonlinear Anal., Volume 20 (2002), pp. 145-149
[29] Quasilenear asymptotically periodic Schrodinger equations with critical growth, Calc. Var. Partial Differ. Equ., Volume 39 (2010), pp. 1-33
[30] Quasilinear asymptotically periodic Schrodinger equations with subcritical growth, Nonlinear Anal, Volume 72 (2010), pp. 2935-2949
[31] The method of Nehari manifold, Hand book of nonconvex analysis and applications (Int. Press, Somerville), Volume 2010 (2010), pp. 597-632
[32] Minimax Theorems, Birkhuser Boston, Boston, 1996
[33] Existence and muliplicity of solutions for a quasilinear Choquard equation via perturbation method, J. Math. Phys., Volume 59 (2018), pp. 1-10
Cité par Sources :