Voir la notice de l'article provenant de la source International Scientific Research Publications
Ganie, Abdul Hamid  1
@article{JNSA_2021_14_5_a4, author = {Ganie, Abdul Hamid }, title = {New approach for structural behavior of variables}, journal = {Journal of nonlinear sciences and its applications}, pages = {351-358}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, doi = {10.22436/jnsa.014.05.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.05/} }
TY - JOUR AU - Ganie, Abdul Hamid TI - New approach for structural behavior of variables JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 351 EP - 358 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.05/ DO - 10.22436/jnsa.014.05.05 LA - en ID - JNSA_2021_14_5_a4 ER -
%0 Journal Article %A Ganie, Abdul Hamid %T New approach for structural behavior of variables %J Journal of nonlinear sciences and its applications %D 2021 %P 351-358 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.05/ %R 10.22436/jnsa.014.05.05 %G en %F JNSA_2021_14_5_a4
Ganie, Abdul Hamid . New approach for structural behavior of variables. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 351-358. doi : 10.22436/jnsa.014.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.05/
[1] Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., Volume 10 (2009), pp. 1-6
[2] A novel approach for dimension reduction of microarray, Comput. Biol. Chem., Volume 71 (2017), pp. 161-169 | DOI
[3] Artificial Neural Network Classification of High Dimensional Data with Novel Optimization Approach of Dimension Reduction, Ann. Data. Sci., Volume 5 (2018), pp. 615-635 | DOI
[4] Some inequalities for the expectation and variance of a random variable whose PDF is n-time differentiable, J. Inequal. Pure Appl. Math., Volume 1 (2000), pp. 1-13
[5] Some inequalities for probability, expectation, and variance of random variables defined over a finite interval, Comput. Math. Appl., Volume 43 (2002), pp. 1319-1357 | DOI
[6] On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., Volume 10 (2009), pp. 1-5
[7] On the fractional calculus model of viscoelastic behaviour, J. Rheol., Volume 30 (1996), pp. 133-155 | DOI
[8] Fractional integral inequalities for continuous random variables, Malaya J. Mat., Volume 2 (2014), pp. 172-179
[9] Certain sequence spaces using ∆-operator, Adv. Stud. Contemp. Math. (Kyungshang), Volume 30 (2020), pp. 17-27
[10] Certain sequence spaces using ∆-operator, Adv. Stud. Contemp. Math, Volume 30 (2020), pp. 17-27
[11] Fractional distributions and probability density functions of random variables generated using FDE, J. Math. Comput. Sci, Volume 10 (2020), pp. 522-534 | DOI
[12] Waves and Distributions, World Scientific, New Jersey, 1995 | DOI
[13] Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006
[14] Moments inequalities of a random variable defined over a finite interval, J. Inequal. Pure Appl. Math., Volume 3 (2002), pp. 1-11
[15] Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals, Volume 140 (2020), pp. 1-13 | DOI
[16] Global Dynamics of a fractional order model for the transmission of HIV Epidemic with optimal control, Chaos Solitons Fractals, Volume 138 (2020), pp. 1-24 | DOI
[17] Modeling the Mechanics of Viral Kinetics under Immune Control during Primary Infection of HIV-1 with Treatment in Fractional Order, Phys. A, Volume 545 (2020), pp. 1-19 | DOI
[18] New bounds for moments of continuous random variables, Comput. Math. Appl., Volume 60 (2010), pp. 3130-3138 | DOI
[19] Extensions of several integral inequalities, J. Inequal. Pure Appl. Math., Volume 7 (2006), pp. 1-6
[20] On Some Generalized Fractional Integral Inequalities for p-Convex Functions, Fractal Fract., Volume 3 (2019), pp. 1-9 | DOI
[21] Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993
[22] A brief note on some bounds connecting lower order moments for random variables defined on a finite interval, Int. J. Theor. Appl. Sci., Volume 1 (2009), pp. 83-85
[23] (k, s)-Riemann-Liouville fractional integral inequalities for continuous random variables, Arab. J. Math., Volume 6 (2017), pp. 55-63 | DOI
[24] A Review on Fractional Differential Equations and a Numerical Method to Solve Some Boundary Value Problems, Nonlinear Syst, , 2019
[25] Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., Volume 2 (2014), pp. 322-329
Cité par Sources :