New approach for structural behavior of variables
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 351-358.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The main scenario of the present paper is to introduce certain approach of variables by setting the structural behavior of fractional inequalities. Some new structural properties will be established concerning them.
DOI : 10.22436/jnsa.014.05.05
Classification : 26D53, 26A33, 60E15
Keywords: Fractional notion, variables, Lebesgue measurable functions

Ganie, Abdul Hamid  1

1 Basic Science Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Kingdom of Saudi Arabia
@article{JNSA_2021_14_5_a4,
     author = {Ganie, Abdul Hamid },
     title = {New approach for structural behavior of variables},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {351-358},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     doi = {10.22436/jnsa.014.05.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.05/}
}
TY  - JOUR
AU  - Ganie, Abdul Hamid 
TI  - New approach for structural behavior of variables
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 351
EP  - 358
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.05/
DO  - 10.22436/jnsa.014.05.05
LA  - en
ID  - JNSA_2021_14_5_a4
ER  - 
%0 Journal Article
%A Ganie, Abdul Hamid 
%T New approach for structural behavior of variables
%J Journal of nonlinear sciences and its applications
%D 2021
%P 351-358
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.05/
%R 10.22436/jnsa.014.05.05
%G en
%F JNSA_2021_14_5_a4
Ganie, Abdul Hamid . New approach for structural behavior of variables. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 351-358. doi : 10.22436/jnsa.014.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.05/

[1] Anastassiou, G.; Hooshmandasl, M. R.; Ghasemi, A.; Moftakharzadeh, F. Montgomery identities for fractional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., Volume 10 (2009), pp. 1-6

[2] Aziz, R.; Verma, C. K.; Srivastava, N. A novel approach for dimension reduction of microarray, Comput. Biol. Chem., Volume 71 (2017), pp. 161-169 | DOI

[3] Aziz, R.; Verma, C. K.; Srivastava, N. Artificial Neural Network Classification of High Dimensional Data with Novel Optimization Approach of Dimension Reduction, Ann. Data. Sci., Volume 5 (2018), pp. 615-635 | DOI

[4] Barnett, N. S.; Cerone, P.; Dragomir, S. S.; Roumeliotis, J. Some inequalities for the expectation and variance of a random variable whose PDF is n-time differentiable, J. Inequal. Pure Appl. Math., Volume 1 (2000), pp. 1-13

[5] Barnett, N. S.; Dragomir, S. S.; Agarwal, R. P. Some inequalities for probability, expectation, and variance of random variables defined over a finite interval, Comput. Math. Appl., Volume 43 (2002), pp. 1319-1357 | DOI

[6] Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., Volume 10 (2009), pp. 1-5

[7] Blutzer, R. L.; Torvik, P. J. On the fractional calculus model of viscoelastic behaviour, J. Rheol., Volume 30 (1996), pp. 133-155 | DOI

[8] Dahmani, Z. Fractional integral inequalities for continuous random variables, Malaya J. Mat., Volume 2 (2014), pp. 172-179

[9] Fathima, D.; Ganie, A. H.; Antesar, A. Certain sequence spaces using ∆-operator, Adv. Stud. Contemp. Math. (Kyungshang), Volume 30 (2020), pp. 17-27

[10] Ganie, A. H.; Aldawoud, A. Certain sequence spaces using ∆-operator, Adv. Stud. Contemp. Math, Volume 30 (2020), pp. 17-27

[11] Hammad, M. A.; Awad, A.; Khalil, R.; Aldabbas, E. Fractional distributions and probability density functions of random variables generated using FDE, J. Math. Comput. Sci, Volume 10 (2020), pp. 522-534 | DOI

[12] Jonsson, T.; Yngvason, J. Waves and Distributions, World Scientific, New Jersey, 1995 | DOI

[13] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006

[14] Kumar, P. Moments inequalities of a random variable defined over a finite interval, J. Inequal. Pure Appl. Math., Volume 3 (2002), pp. 1-11

[15] Naik, P. A.; Owolabi, K. M.; Yavuz, M.; Zu, J. Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals, Volume 140 (2020), pp. 1-13 | DOI

[16] Naik, P. A.; Zu, J.; Owolabi, K. M. Global Dynamics of a fractional order model for the transmission of HIV Epidemic with optimal control, Chaos Solitons Fractals, Volume 138 (2020), pp. 1-24 | DOI

[17] Naik, P. A.; Zu, J.; Owolabi, K. M. Modeling the Mechanics of Viral Kinetics under Immune Control during Primary Infection of HIV-1 with Treatment in Fractional Order, Phys. A, Volume 545 (2020), pp. 1-19 | DOI

[18] Niezgoda, M. New bounds for moments of continuous random variables, Comput. Math. Appl., Volume 60 (2010), pp. 3130-3138 | DOI

[19] Qi, F.; Li, A.-J.; Zhao, W.-Z.; Niu, D.-W.; Cao, J. Extensions of several integral inequalities, J. Inequal. Pure Appl. Math., Volume 7 (2006), pp. 1-6

[20] Salas¸, S.; Erdas¸, Y.; Toplu, T.; Set, E. On Some Generalized Fractional Integral Inequalities for p-Convex Functions, Fractal Fract., Volume 3 (2019), pp. 1-9 | DOI

[21] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993

[22] Sharma, R.; Devi, S.; Kapoor, G.; Ram, S.; Barnett, N. S. A brief note on some bounds connecting lower order moments for random variables defined on a finite interval, Int. J. Theor. Appl. Sci., Volume 1 (2009), pp. 83-85

[23] Tomar, M.; Maden, S.; Set, E. (k, s)-Riemann-Liouville fractional integral inequalities for continuous random variables, Arab. J. Math., Volume 6 (2017), pp. 55-63 | DOI

[24] Troparevsky, M. I.; Seminara, S. A.; Fabio, M. A. A Review on Fractional Differential Equations and a Numerical Method to Solve Some Boundary Value Problems, Nonlinear Syst, , 2019

[25] Yildirim, H.; Kirtay, Z. Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., Volume 2 (2014), pp. 322-329

Cité par Sources :