Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 324-338.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the present article, we establish a link between the theory of positive linear operators and the orthogonal polynomials by defining Bernstein-Chlodowsky-Kantorovich operators based on Gould-Hopper polynomials (orthogonal polynomials) and investigate the degree of convergence of these operators for unbounded continuous functions having a polynomial growth. In this connection, the moments of the operators are derived first, and then the approximation degree of the considered operators is established by means of the complete and the partial moduli of continuity. Next, we focus on the rate of convergence of these operators for functions in a weighted space. The associated Generalized Boolean Sum (GBS) operator of the operators under study is defined, and the degree of approximation is studied with the aid of the mixed modulus of smoothness and the Lipschitz class of Bögel continuous functions.
DOI : 10.22436/jnsa.014.05.03
Classification : 41A10, 41A25, 41A36, 41A63
Keywords: Gould-Hopper polynomials, modulus of continuity, Peetre's K-functional, Bögel continuous functions, mixed modulus of smoothness

Agrawal, P. N.  1 ; Singh, Sompal  1

1 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India
@article{JNSA_2021_14_5_a2,
     author = {Agrawal, P. N.  and Singh, Sompal },
     title = {Generalized {Bernstein-Chlodowsky-Kantorovich} type operators involving {Gould-Hopper} polynomials},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {324-338},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     doi = {10.22436/jnsa.014.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.03/}
}
TY  - JOUR
AU  - Agrawal, P. N. 
AU  - Singh, Sompal 
TI  - Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 324
EP  - 338
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.03/
DO  - 10.22436/jnsa.014.05.03
LA  - en
ID  - JNSA_2021_14_5_a2
ER  - 
%0 Journal Article
%A Agrawal, P. N. 
%A Singh, Sompal 
%T Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials
%J Journal of nonlinear sciences and its applications
%D 2021
%P 324-338
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.03/
%R 10.22436/jnsa.014.05.03
%G en
%F JNSA_2021_14_5_a2
Agrawal, P. N. ; Singh, Sompal . Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 324-338. doi : 10.22436/jnsa.014.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.03/

[1] Acu, A. M.; Acar, T.; Muraru, C.-V.; Radu, V. A. Some approximation properties by a class of bivariate operators, Math. Methods Appl. Sci., Volume 42 (2019), pp. 5551-5565 | DOI

[2] Acu, A. M.; Dancs, M.; Radu, V. A. Representations for the inverses of certain operators,, Commun. Pure Appl. Anal., Volume 19 (2020), pp. 4097-4109 | DOI

[3] Agrawal, P. N.; Chauhan, B. Baxhaku and R. The approximation of bivariate Chlodowsky-Sz´asz-Kantorovich-Charliertype operators, J. Inequal. Appl., Volume 2017 (2017), pp. 1-23 | DOI

[4] Agrawal, P. N.; Ispir, N. Degree of approximation for bivariate Chlodowsky-Szasz-Charlier type operators, Results Math., Volume 69 (2016), pp. 369-385 | DOI

[5] Badea, C.; Badea, I.; Cottin, C.; Gonska, H. H. Notes on the degree of approximation of B-continuous and B-differentiable functions,, J. Approx. Theory Appl., Volume 4 (1988), pp. 95-108

[6] Badea, C.; Badea, I.; Gonska, H. H. A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math. Soc., Volume 34 (1986), pp. 53-64 | DOI

[7] Badea, C.; Cottin, C. Korovkin-type theorems for generalized Boolean sum operators, Approximation theory (Kecskemet,1990), Colloq. Math. Soc. Janos Bolyai, Volume 58 (1991), pp. 51-67

[8] Baxhaku, B.; Berisha, A. The approximation Szasz-Chlodowsky type operators involving Gould-Hopper type polynomials, Abstr. Appl. Anal., Volume 2017 (2017), pp. 1-8 | DOI

[9] Bogel, K. Mehrdimensionale Differentiation von Funktionen mehrerer reeller Veranderlichen, J. Reine Angew. Math., Volume 170 (1934), pp. 197-217 | DOI

[10] Bogel, K. Uber mehrdimensionale Differentiation, Integration und beschrankte Variation, J. Reine Angew. Math., Volume 173 (1935), pp. 5-30 | DOI

[11] Butzer, P. L.; Berens, H. Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967

[12] Chen, X.; Tan, J.; Liu, Z.; Xie, J. Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., Volume 450 (2017), pp. 244-261 | DOI

[13] Dobrescu, E.; Matei, I. The approximation by Bernˇste˘ın type polynomials of bidimensionally continuous functions, An. Univ. Timisoara Ser. Sti. Mat.-Fiz., Volume 4 (1966), pp. 85-90

[14] Gadziev, A. D. Positive linear operators in weighted spaces of functions of several variables (Russian), Izv. Akad. Nauk Azerbaıdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk, Volume 1 (1980), pp. 32-37

[15] Gadziev, A. D.; Hacisalihoglu, H. Convergence of the sequences of linear positive operators, Ankara University Press, Ankara, , Turkey, 1995

[16] Gupta, V.; Rassias, T. M.; Agrawal, P. N.; Acu, A. M. Recent Advances in Constructive Approximation Theory,, Springer, Cham, 2018 | DOI

[17] Ispir, N.; Atakut, C. Approximation by modified Szasz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 112 (2002), pp. 571-578 | DOI

[18] Kajla, A.; Acar, T. Modified α-Bernstein operators with better approximation properties, Ann. Funct. Anal., Volume 10 (2019), pp. 570-582 | DOI

[19] Sidharth, M.; Acu, A. M.; Agrawal, P. N. Chlodowsky-Szasz-Appell-type operators for functions of two variables, Ann. Funct. Anal., Volume 8 (2017), pp. 446-459 | DOI

Cité par Sources :