Voir la notice de l'article provenant de la source International Scientific Research Publications
Agrawal, P. N.  1 ; Singh, Sompal  1
@article{JNSA_2021_14_5_a2, author = {Agrawal, P. N. and Singh, Sompal }, title = {Generalized {Bernstein-Chlodowsky-Kantorovich} type operators involving {Gould-Hopper} polynomials}, journal = {Journal of nonlinear sciences and its applications}, pages = {324-338}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, doi = {10.22436/jnsa.014.05.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.03/} }
TY - JOUR AU - Agrawal, P. N. AU - Singh, Sompal TI - Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 324 EP - 338 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.03/ DO - 10.22436/jnsa.014.05.03 LA - en ID - JNSA_2021_14_5_a2 ER -
%0 Journal Article %A Agrawal, P. N. %A Singh, Sompal %T Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials %J Journal of nonlinear sciences and its applications %D 2021 %P 324-338 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.03/ %R 10.22436/jnsa.014.05.03 %G en %F JNSA_2021_14_5_a2
Agrawal, P. N. ; Singh, Sompal . Generalized Bernstein-Chlodowsky-Kantorovich type operators involving Gould-Hopper polynomials. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 324-338. doi : 10.22436/jnsa.014.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.03/
[1] Some approximation properties by a class of bivariate operators, Math. Methods Appl. Sci., Volume 42 (2019), pp. 5551-5565 | DOI
[2] Representations for the inverses of certain operators,, Commun. Pure Appl. Anal., Volume 19 (2020), pp. 4097-4109 | DOI
[3] The approximation of bivariate Chlodowsky-Sz´asz-Kantorovich-Charliertype operators, J. Inequal. Appl., Volume 2017 (2017), pp. 1-23 | DOI
[4] Degree of approximation for bivariate Chlodowsky-Szasz-Charlier type operators, Results Math., Volume 69 (2016), pp. 369-385 | DOI
[5] Notes on the degree of approximation of B-continuous and B-differentiable functions,, J. Approx. Theory Appl., Volume 4 (1988), pp. 95-108
[6] A test function theorem and approximation by pseudopolynomials, Bull. Austral. Math. Soc., Volume 34 (1986), pp. 53-64 | DOI
[7] Korovkin-type theorems for generalized Boolean sum operators, Approximation theory (Kecskemet,1990), Colloq. Math. Soc. Janos Bolyai, Volume 58 (1991), pp. 51-67
[8] The approximation Szasz-Chlodowsky type operators involving Gould-Hopper type polynomials, Abstr. Appl. Anal., Volume 2017 (2017), pp. 1-8 | DOI
[9] Mehrdimensionale Differentiation von Funktionen mehrerer reeller Veranderlichen, J. Reine Angew. Math., Volume 170 (1934), pp. 197-217 | DOI
[10] Uber mehrdimensionale Differentiation, Integration und beschrankte Variation, J. Reine Angew. Math., Volume 173 (1935), pp. 5-30 | DOI
[11] Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967
[12] Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., Volume 450 (2017), pp. 244-261 | DOI
[13] The approximation by Bernˇste˘ın type polynomials of bidimensionally continuous functions, An. Univ. Timisoara Ser. Sti. Mat.-Fiz., Volume 4 (1966), pp. 85-90
[14] Positive linear operators in weighted spaces of functions of several variables (Russian), Izv. Akad. Nauk Azerbaıdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk, Volume 1 (1980), pp. 32-37
[15] Convergence of the sequences of linear positive operators, Ankara University Press, Ankara, , Turkey, 1995
[16] Recent Advances in Constructive Approximation Theory,, Springer, Cham, 2018 | DOI
[17] Approximation by modified Szasz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 112 (2002), pp. 571-578 | DOI
[18] Modified α-Bernstein operators with better approximation properties, Ann. Funct. Anal., Volume 10 (2019), pp. 570-582 | DOI
[19] Chlodowsky-Szasz-Appell-type operators for functions of two variables, Ann. Funct. Anal., Volume 8 (2017), pp. 446-459 | DOI
Cité par Sources :