Voir la notice de l'article provenant de la source International Scientific Research Publications
Aslan, Reşat 1 ; Izgi, Aydin  2
@article{JNSA_2021_14_5_a1, author = {Aslan, Re\c{s}at and Izgi, Aydin }, title = {Approximation by a new generalization of {Sz\'asz-Mirakjan} operators via \((p,q)\)-calculus}, journal = {Journal of nonlinear sciences and its applications}, pages = {310-323}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, doi = {10.22436/jnsa.014.05.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.02/} }
TY - JOUR AU - Aslan, Reşat AU - Izgi, Aydin TI - Approximation by a new generalization of Szász-Mirakjan operators via \((p,q)\)-calculus JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 310 EP - 323 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.02/ DO - 10.22436/jnsa.014.05.02 LA - en ID - JNSA_2021_14_5_a1 ER -
%0 Journal Article %A Aslan, Reşat %A Izgi, Aydin %T Approximation by a new generalization of Szász-Mirakjan operators via \((p,q)\)-calculus %J Journal of nonlinear sciences and its applications %D 2021 %P 310-323 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.02/ %R 10.22436/jnsa.014.05.02 %G en %F JNSA_2021_14_5_a1
Aslan, Reşat; Izgi, Aydin . Approximation by a new generalization of Szász-Mirakjan operators via \((p,q)\)-calculus. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 310-323. doi : 10.22436/jnsa.014.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.02/
[1] $(p,q)$-generalization of Szasz--Mirakyan operators, Math. Methods Appl. Sci., Volume 39 (2016), pp. 2685-2695
[2] Generalized Szasz-Mirakjan type operators via $q$-calculus and approximation properties, Appl. Math. Comput., Volume 371 (2020), pp. 1-13
[3] A Dunkl type generalization of Szasz operators via post-quantum calculus, J. Inequl. Appl., Volume 2018 (2018), pp. 1-15
[4] Korovkin-type approximation theory and its applications, Walter de Gruyter, Berlin, 1994
[5] A generalization of Szasz--Mirakyan operators based on $q$-integers, Math. Comput. Modelling, Volume 47 (2008), pp. 1052-1062
[6] On the generalized Szasz--Mirakyan operators, Results Math., Volume 65 (2014), pp. 441-452
[7] A new construction of Szasz-Mirakyan operators, Numer. Algorithms, Volume 77 (2017), pp. 313-326
[8] Ağırlıklı Uzaylarda q-Szász-Kantorovich-Chlodowsky Operatörlerinin Yaklaşımları, Erciyes Univer. J. Inst. Sci. Tech., Volume 36 (2020), pp. 138-150
[9] Dunkl generalization of Szasz beta-type operators, Math. Methods Appl. Sci., Volume 40 (2017), pp. 7697-7704
[10] Stancu variant of $(p, q)$ Szasz--Mirakyan operators, J. Inequal. Spec. Funct., Volume 8 (2017), pp. 1-7
[11] Constructive Approximation, Springer, Berlin, 1993
[12] Modified Szasz-Mirakjan-Kantorovich operators preserving linear functions, Turkish J. Math., Volume 33 (2009), pp. 151-158
[13] Theorems of korovkin type, Mat. Zametki, Volume 20 (1976), pp. 995-998
[14] $R(p,q)$-calculus: differentiation and integration, SUT J. Math., Volume 49 (2013), pp. 145-167
[15] On modified baskakov operators on weighted spaces, Turkish J. Math., Volume 25 (2001), pp. 355-365
[16] Approximation by modified Szasz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 112 (2002), pp. 571-578
[17] Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, arXiv, Volume 2006 (2006), pp. 1-16
[18] On approximation properties of $(p,q)$-Bernstein operators, Eur. J. Pure Appl. Math., Volume 11 (2018), pp. 457-467
[19] Some approximation results for operators of Szasz-Mirakjan-Durrmeyer type, Math. Slovaca, Volume 66 (2016), pp. 945-958
[20] A $q$-analogue of the bernstein operators, Seminar on Numerical and Statistical Calculus (Cluj-Napoca), Volume 1987 (1987), pp. 85-92
[21] On $q$-parametric Szasz-Mirakjan operators, Mediterr. J. Math., Volume 7 (2010), pp. 297-311
[22] On certain $q$-analogue of Szasz Kantorovich operators, J. Comput. Appl. Math., Volume 37 (2010), pp. 407-419
[23] Approximation of continuous functions with the aid of polynomials, In Dokl. Acad. Nauk SSSR, Volume 31 (1941), pp. 201-205
[24] Certain modifications of $(p, q)$-Szasz-Mirakyan operator, Azerb. J. Math., Volume 9 (2019), pp. 81-95
[25] On $(p,q)$-Szasz-Mirakyan operators and their approximation properties, J. Inequal. Appl., Volume 2017 (2017), pp. 1-12
[26] Modified $(p,q)$-bernstein-schurer operators and their approximation properties, Cogent Math., Volume 3 (2016), pp. 1-15
[27] On a Kantorovich Variant of $(p,q)$-Szasz-Mirakjan Operators, J. Funct. Spaces, Volume 2016 (2016), pp. 1-9
[28] On $(p,q)$-analogue of bernstein operators, Appl. Math. Comput., Volume 266 (2015), pp. 847-882
[29] Improved approximation and error estimations by king type $(p,q)$-Szasz-Mirakjan kantorovich operators, Appl. Math. Comput., Volume 348 (2019), pp. 175-185
[30] Dunkl generalization of $q$-Szasz-Mirakjan operators which preserve x2, Filomat, Volume 32 (2018), pp. 733-747
[31] Weighted statistical approximation by kantorovich type $q$-Szasz-Mirakjan operators, Appl. Math. Comput., Volume 217 (2011), pp. 7913-7919
[32] Szasz operatorlerinin bir genellestirmesi, In: Abstracts of the 32nd National Mathematics Symposium, Ondokuz Mayis University, Samsun, Turkey, 31 August-3, Volume 2019 (2019)
[33] Bernstein polynomials based on the $q$-integers, Ann. Num. Math., Volume 4 (1997), pp. 511-518
[34] On the fundamental theorem of $(p,q)$-calculus and some $(p,q)$-taylor formulas, Results Math., Volume 73 (2018), pp. 1-21
[35] Representations of two parameter quantum algebras and $p,q$-special functions, J. Math. Anal. Appl., Volume 335 (2007), pp. 268-279
[36] Generalization of S. Bernstein's polynomials to the infinite interval, J. Research Nat. Bur. Standards, Volume 45 (1950), pp. 239-245
[37] Weighted approximation by Szasz-Mirakjan operators, J. Approx. Theory, Volume 76 (1994), pp. 393-402
Cité par Sources :