Approximation by a new generalization of Szász-Mirakjan operators via $(p,q)$-calculus
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 310-323.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, we obtain the approximation properties of a new generalization of Szász-Mirakjan operators based on post-quantum calculus. Firstly, for these operators, a recurrence formulation for the moments is obtained, and up to the fourth degree, the central moments are examined. Then, a local approximation result is attained. Furthermore, the degree of approximation in respect of the modulus of continuity on a finite closed set and the class of Lipschitz are computed. Next, the weighted uniform approximation on an unbounded interval is showed, and by the modulus of continuity, the order of convergence is estimated. Lastly, we proved the Voronovskaya type theorem and gave some illustrations to compare the related operators' convergence to a certain function.
DOI : 10.22436/jnsa.014.05.02
Classification : 41A25, 41A35, 41A36
Keywords: Weighted approximation, Szász-Mirakjan operators, modulus of continuity, \((p,q)\)-calculus

Aslan, Reşat 1 ; Izgi, Aydin  2

1 Provincial Directorate of Labor and Employment Agency, 63050, Şanlıurfa, Turkey
2 Department of Mathematics, Faculty of Sciences and Arts, Harran University, 63100, Şanlıurfa, Turkey
@article{JNSA_2021_14_5_a1,
     author = {Aslan, Re\c{s}at and Izgi, Aydin },
     title = {Approximation by a new generalization of {Sz\'asz-Mirakjan} operators via 	\((p,q)\)-calculus},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {310-323},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     doi = {10.22436/jnsa.014.05.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.02/}
}
TY  - JOUR
AU  - Aslan, Reşat
AU  - Izgi, Aydin 
TI  - Approximation by a new generalization of Szász-Mirakjan operators via 	\((p,q)\)-calculus
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 310
EP  - 323
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.02/
DO  - 10.22436/jnsa.014.05.02
LA  - en
ID  - JNSA_2021_14_5_a1
ER  - 
%0 Journal Article
%A Aslan, Reşat
%A Izgi, Aydin 
%T Approximation by a new generalization of Szász-Mirakjan operators via 	\((p,q)\)-calculus
%J Journal of nonlinear sciences and its applications
%D 2021
%P 310-323
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.02/
%R 10.22436/jnsa.014.05.02
%G en
%F JNSA_2021_14_5_a1
Aslan, Reşat; Izgi, Aydin . Approximation by a new generalization of Szász-Mirakjan operators via 	\((p,q)\)-calculus. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 310-323. doi : 10.22436/jnsa.014.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.02/

[1] Acar, T. $(p,q)$-generalization of Szasz--Mirakyan operators, Math. Methods Appl. Sci., Volume 39 (2016), pp. 2685-2695

[2] Ahasan, M.; Mursaleen, M. Generalized Szasz-Mirakjan type operators via $q$-calculus and approximation properties, Appl. Math. Comput., Volume 371 (2020), pp. 1-13

[3] Alotaibi, A.; Nasiruzzaman, M.; Mursaleen, M. A Dunkl type generalization of Szasz operators via post-quantum calculus, J. Inequl. Appl., Volume 2018 (2018), pp. 1-15

[4] Altomare, F.; Campiti, M. Korovkin-type approximation theory and its applications, Walter de Gruyter, Berlin, 1994

[5] Aral, A. A generalization of Szasz--Mirakyan operators based on $q$-integers, Math. Comput. Modelling, Volume 47 (2008), pp. 1052-1062

[6] Aral, A.; Inoan, D.; Raşa, I. On the generalized Szasz--Mirakyan operators, Results Math., Volume 65 (2014), pp. 441-452

[7] Aral, A.; Ulusoy, G.; Deniz, E. A new construction of Szasz-Mirakyan operators, Numer. Algorithms, Volume 77 (2017), pp. 313-326

[8] Aslan, R.; Izgi, A. Ağırlıklı Uzaylarda q-Szász-Kantorovich-Chlodowsky Operatörlerinin Yaklaşımları, Erciyes Univer. J. Inst. Sci. Tech., Volume 36 (2020), pp. 138-150

[9] Çekim, B.; Kantar, Ü. Dinlemez; Yüksel, İ. Dunkl generalization of Szasz beta-type operators, Math. Methods Appl. Sci., Volume 40 (2017), pp. 7697-7704

[10] Devdhara, A. R.; Mishra, V. N. Stancu variant of $(p, q)$ Szasz--Mirakyan operators, J. Inequal. Spec. Funct., Volume 8 (2017), pp. 1-7

[11] DeVore, R. A.; Lorentz, G. G. Constructive Approximation, Springer, Berlin, 1993

[12] Duman, O.; Özarslan, M. A.; Vecchia, B. D. Modified Szasz-Mirakjan-Kantorovich operators preserving linear functions, Turkish J. Math., Volume 33 (2009), pp. 151-158

[13] Gadzhiev, A. D. Theorems of korovkin type, Mat. Zametki, Volume 20 (1976), pp. 995-998

[14] Hounkonnou, M. N.; Kyemba, J. D. B. $R(p,q)$-calculus: differentiation and integration, SUT J. Math., Volume 49 (2013), pp. 145-167

[15] İspir, N. On modified baskakov operators on weighted spaces, Turkish J. Math., Volume 25 (2001), pp. 355-365

[16] İspir, N.; Atakut, C. Approximation by modified Szasz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 112 (2002), pp. 571-578

[17] Jagannathan, R.; Rao, K. S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, arXiv, Volume 2006 (2006), pp. 1-16

[18] Karahan, D.; Izgi, A. On approximation properties of $(p,q)$-Bernstein operators, Eur. J. Pure Appl. Math., Volume 11 (2018), pp. 457-467

[19] Krech, G. Some approximation results for operators of Szasz-Mirakjan-Durrmeyer type, Math. Slovaca, Volume 66 (2016), pp. 945-958

[20] Lupaş, A. A $q$-analogue of the bernstein operators, Seminar on Numerical and Statistical Calculus (Cluj-Napoca), Volume 1987 (1987), pp. 85-92

[21] Mahmudov, N. I. On $q$-parametric Szasz-Mirakjan operators, Mediterr. J. Math., Volume 7 (2010), pp. 297-311

[22] Mahmudov, N.; Gupta, V. On certain $q$-analogue of Szasz Kantorovich operators, J. Comput. Appl. Math., Volume 37 (2010), pp. 407-419

[23] Mirakjan, G. M. Approximation of continuous functions with the aid of polynomials, In Dokl. Acad. Nauk SSSR, Volume 31 (1941), pp. 201-205

[24] Mishra, V. N.; Pandey, S. Certain modifications of $(p, q)$-Szasz-Mirakyan operator, Azerb. J. Math., Volume 9 (2019), pp. 81-95

[25] Mursaleen, M.; Al-Abied, A. A. H.; Alotaibi, A. On $(p,q)$-Szasz-Mirakyan operators and their approximation properties, J. Inequal. Appl., Volume 2017 (2017), pp. 1-12

[26] Mursaleen, M.; Al-Abied, A.; Nasiruzzaman, M. Modified $(p,q)$-bernstein-schurer operators and their approximation properties, Cogent Math., Volume 3 (2016), pp. 1-15

[27] Mursaleen, M.; Alotaibi, A.; Ansari, K. J. On a Kantorovich Variant of $(p,q)$-Szasz-Mirakjan Operators, J. Funct. Spaces, Volume 2016 (2016), pp. 1-9

[28] Mursaleen, M.; Ansari, K. J.; Khan, A. On $(p,q)$-analogue of bernstein operators, Appl. Math. Comput., Volume 266 (2015), pp. 847-882

[29] Mursaleen, M.; Naaz, A.; Khan, A. Improved approximation and error estimations by king type $(p,q)$-Szasz-Mirakjan kantorovich operators, Appl. Math. Comput., Volume 348 (2019), pp. 175-185

[30] Mursaleen, M.; Rahman, S. Dunkl generalization of $q$-Szasz-Mirakjan operators which preserve x2, Filomat, Volume 32 (2018), pp. 733-747

[31] Örkcü, M.; Doğru, O. Weighted statistical approximation by kantorovich type $q$-Szasz-Mirakjan operators, Appl. Math. Comput., Volume 217 (2011), pp. 7913-7919

[32] Ousman, N.; Izgi, A. Szasz operatorlerinin bir genellestirmesi, In: Abstracts of the 32nd National Mathematics Symposium, Ondokuz Mayis University, Samsun, Turkey, 31 August-3, Volume 2019 (2019)

[33] Phillips, G. M. Bernstein polynomials based on the $q$-integers, Ann. Num. Math., Volume 4 (1997), pp. 511-518

[34] Sadjang, P. N. On the fundamental theorem of $(p,q)$-calculus and some $(p,q)$-taylor formulas, Results Math., Volume 73 (2018), pp. 1-21

[35] Sahai, V.; Yadav, S. Representations of two parameter quantum algebras and $p,q$-special functions, J. Math. Anal. Appl., Volume 335 (2007), pp. 268-279

[36] Szasz, O. Generalization of S. Bernstein's polynomials to the infinite interval, J. Research Nat. Bur. Standards, Volume 45 (1950), pp. 239-245

[37] Zhou, D. X. Weighted approximation by Szasz-Mirakjan operators, J. Approx. Theory, Volume 76 (1994), pp. 393-402

Cité par Sources :