The exponentiated half-logistic odd lindley-G family of distributions with applications
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 287-309.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A new generalized family of models called the Exponentiated Half Logistic Odd Lindley-G (EHLOL-G) distribution is developed and presented. Some explicit expressions for the structural properties including moments, conditional moments, mean and median deviations, distribution of the order statistics, probability weighted moments and R\'enyi entropy are derived. We applied the maximum likelihood estimation technique to estimate the parameters of the model and a simulation study is conducted to examine the efficiency of the maximum likelihood estimators. The special case of the EHLOL-Weibull (EHLOL-W) distribution is fitted to two real data sets.
DOI : 10.22436/jnsa.014.05.01
Classification : 62E99, 60E05
Keywords: Generalized-G distribution, exponentiated distribution, half logistic distribution, odd-lindley distribution, maximum likelihood estimation

Sengweni, Whatmore  1 ; Oluyede, Brodrick  1 ; Makubate, Boikanyo  1

1 Department of Mathematical Statistics, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
@article{JNSA_2021_14_5_a0,
     author = {Sengweni, Whatmore  and Oluyede, Brodrick  and Makubate, Boikanyo },
     title = {The exponentiated half-logistic odd {lindley-G} family of distributions with applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {287-309},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     doi = {10.22436/jnsa.014.05.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.01/}
}
TY  - JOUR
AU  - Sengweni, Whatmore 
AU  - Oluyede, Brodrick 
AU  - Makubate, Boikanyo 
TI  - The exponentiated half-logistic odd lindley-G family of distributions with applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 287
EP  - 309
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.01/
DO  - 10.22436/jnsa.014.05.01
LA  - en
ID  - JNSA_2021_14_5_a0
ER  - 
%0 Journal Article
%A Sengweni, Whatmore 
%A Oluyede, Brodrick 
%A Makubate, Boikanyo 
%T The exponentiated half-logistic odd lindley-G family of distributions with applications
%J Journal of nonlinear sciences and its applications
%D 2021
%P 287-309
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.01/
%R 10.22436/jnsa.014.05.01
%G en
%F JNSA_2021_14_5_a0
Sengweni, Whatmore ; Oluyede, Brodrick ; Makubate, Boikanyo . The exponentiated half-logistic odd lindley-G family of distributions with applications. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 287-309. doi : 10.22436/jnsa.014.05.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.01/

[1] Afify, A. Z.; Alizadeh, M.; Zayed, M.; Ramires, T. G.; Louzada, F. The Odd Log-Logistic Exponentiated Weibull Distribution: Regression Modelling, Properties and Applications, Iran. J. Sci. Tech., Volume 42 (2018), pp. 2273-2288

[2] Afify, A. Z.; Altun, E.; Alizadeh, M.; Ozel, G.; Hamedani, G. G. The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., Volume 8 (2017), pp. 65-91 | Zbl

[3] Chambers, J.; Cleveland, W.; Kleiner, B.; Tukey, J. Graphical Methods for Data Analysis, Chapman and Hall, London, 1983

[4] Chen, G.; Balakrishnan, N. A General Purpose Approximate Goodness-of-fit Test, J. Qual. Tech., Volume 27 (1995), pp. 154-161

[5] Corderio, G. M.; Afify, A. Z.; Yousof, H. M.; Pescim, R. R.; Aryal, G. R. The Exponentiated Weibull-H Family of Distributions: Theory and Applications, Mediterr. J. Math., Volume 14 (2017), pp. 1-22

[6] Cordeiro, G. M.; Alizadeh, M.; Marinho, P. R. D. The Type I Half-Logistic Family of Distributions, J. Stat. Comput. Simul., Volume 86 (2016), pp. 707-728

[7] Cordeiro, G. M.; Alizadeh, M.; Ortega, E. M. M. The Exponentiated Half-Logistic Family of Distributions: Properties and Applications, J. Probab. Stat., Volume 2014 (2014), pp. 1-21

[8] Cordeiro, G. M.; Ortega, E. M. M.; Nadarajaah, S. The Kumaraswamy Weibull Distribution with Application to Failure Data, J. Franklin Inst., Volume 347 (2010), pp. 1399-1429

[9] El-sayed, E.; Mahmoud, E. Kumaraswamy Type 1 Half Logistic Family of Distributions with Applications, Gazi Unive. J. Sci., Volume 32 (2019), pp. 333-349

[10] Gomes-Silva, F.; Percontini, A.; Brito, E. de; Ramos, M. W.; Venancio, R; Cordeiro, G. M. The odd Lindley-G family of distributions, Aust. J. Stat., Volume 46 (2017), pp. 65-87

[11] Gross, A. J.; Clark, V. A. Survival Distributions: Reliability Applications in the Biomedical Sciences, Wiley, New York, 1975

[12] Oluyede, B. O.; Yang, T. A New Class of Generalized Lindley Distributions with applcations, J. Stat. Comput. Simul., Volume 85 (2015), pp. 2072-2100

[13] Rényi, A. On Measures of Entropy and Information, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Univ. California Press, Berkeley, Volume 1961 (1961), pp. 547-561

[14] Smith, R. L.; Naylor, J. C. A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. Roy. Statist. Soc. Ser. C, Volume 36 (1987), pp. 358-369 | DOI

[15] Tahir, M. H.; Cordeiro, G. M.; Mansoor, M.; Zubair, M. The Weibull-Lomax Distribution: Properties and Applications, Hacet. J. Math. Stat., Volume 44 (2015), pp. 461-480

Cité par Sources :