Voir la notice de l'article provenant de la source International Scientific Research Publications
Sengweni, Whatmore  1 ; Oluyede, Brodrick  1 ; Makubate, Boikanyo  1
@article{JNSA_2021_14_5_a0, author = {Sengweni, Whatmore and Oluyede, Brodrick and Makubate, Boikanyo }, title = {The exponentiated half-logistic odd {lindley-G} family of distributions with applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {287-309}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, doi = {10.22436/jnsa.014.05.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.01/} }
TY - JOUR AU - Sengweni, Whatmore AU - Oluyede, Brodrick AU - Makubate, Boikanyo TI - The exponentiated half-logistic odd lindley-G family of distributions with applications JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 287 EP - 309 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.01/ DO - 10.22436/jnsa.014.05.01 LA - en ID - JNSA_2021_14_5_a0 ER -
%0 Journal Article %A Sengweni, Whatmore %A Oluyede, Brodrick %A Makubate, Boikanyo %T The exponentiated half-logistic odd lindley-G family of distributions with applications %J Journal of nonlinear sciences and its applications %D 2021 %P 287-309 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.01/ %R 10.22436/jnsa.014.05.01 %G en %F JNSA_2021_14_5_a0
Sengweni, Whatmore ; Oluyede, Brodrick ; Makubate, Boikanyo . The exponentiated half-logistic odd lindley-G family of distributions with applications. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 5, p. 287-309. doi : 10.22436/jnsa.014.05.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.05.01/
[1] The Odd Log-Logistic Exponentiated Weibull Distribution: Regression Modelling, Properties and Applications, Iran. J. Sci. Tech., Volume 42 (2018), pp. 2273-2288
[2] The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., Volume 8 (2017), pp. 65-91 | Zbl
[3] Graphical Methods for Data Analysis, Chapman and Hall, London, 1983
[4] A General Purpose Approximate Goodness-of-fit Test, J. Qual. Tech., Volume 27 (1995), pp. 154-161
[5] The Exponentiated Weibull-H Family of Distributions: Theory and Applications, Mediterr. J. Math., Volume 14 (2017), pp. 1-22
[6] The Type I Half-Logistic Family of Distributions, J. Stat. Comput. Simul., Volume 86 (2016), pp. 707-728
[7] The Exponentiated Half-Logistic Family of Distributions: Properties and Applications, J. Probab. Stat., Volume 2014 (2014), pp. 1-21
[8] The Kumaraswamy Weibull Distribution with Application to Failure Data, J. Franklin Inst., Volume 347 (2010), pp. 1399-1429
[9] Kumaraswamy Type 1 Half Logistic Family of Distributions with Applications, Gazi Unive. J. Sci., Volume 32 (2019), pp. 333-349
[10] The odd Lindley-G family of distributions, Aust. J. Stat., Volume 46 (2017), pp. 65-87
[11] Survival Distributions: Reliability Applications in the Biomedical Sciences, Wiley, New York, 1975
[12] A New Class of Generalized Lindley Distributions with applcations, J. Stat. Comput. Simul., Volume 85 (2015), pp. 2072-2100
[13] On Measures of Entropy and Information, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Univ. California Press, Berkeley, Volume 1961 (1961), pp. 547-561
[14] A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. Roy. Statist. Soc. Ser. C, Volume 36 (1987), pp. 358-369 | DOI
[15] The Weibull-Lomax Distribution: Properties and Applications, Hacet. J. Math. Stat., Volume 44 (2015), pp. 461-480
Cité par Sources :