The odd Weibull-Topp-Leone-G power series family of distributions: model, properties, and applications
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 268-286.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A new generalization of the odd Weibull-Topp-Leone-G family of distributions called the odd Weibull-Topp-Leone-G power series family of distributions is developed. Statistical properties of the new distribution were derived. We also derive the maximum likelihood estimates of the proposed model. Some special cases for the new family of distributions were also considered. We conducted a simulation study to evaluate the consistency of the maximum likelihood estimates. Two real data examples were also considered to demonstrate the usefulness of the newly proposed family of distributions.
DOI : 10.22436/jnsa.014.04.06
Classification : 62E99, 60E05
Keywords: Odd Weibull-Topp-Leone-G, odd Weibull-G, Topp-Leone-G distribution, power series distribution

Broderick Oluyede 1 ; Chipepa, Fastel 2 ; Wanduku, Divine  3

1 Department of Mathematical Statistics , Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
2 Department of Mathematical Statistics , Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana;Department of Applied Mathematics and Statistics, Midlands State University, P. Bag 9055, Gweru, Zimbabwe
3 Department of Mathematical Sciences , Georgia Southern University, GA 30460, USA
@article{JNSA_2021_14_4_a5,
     author = {Broderick Oluyede and Chipepa, Fastel and Wanduku, Divine },
     title = {The odd {Weibull-Topp-Leone-G} power series family of  distributions: model, properties, and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {268-286},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     doi = {10.22436/jnsa.014.04.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.06/}
}
TY  - JOUR
AU  - Broderick Oluyede
AU  - Chipepa, Fastel
AU  - Wanduku, Divine 
TI  - The odd Weibull-Topp-Leone-G power series family of  distributions: model, properties, and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 268
EP  - 286
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.06/
DO  - 10.22436/jnsa.014.04.06
LA  - en
ID  - JNSA_2021_14_4_a5
ER  - 
%0 Journal Article
%A Broderick Oluyede
%A Chipepa, Fastel
%A Wanduku, Divine 
%T The odd Weibull-Topp-Leone-G power series family of  distributions: model, properties, and applications
%J Journal of nonlinear sciences and its applications
%D 2021
%P 268-286
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.06/
%R 10.22436/jnsa.014.04.06
%G en
%F JNSA_2021_14_4_a5
Broderick Oluyede; Chipepa, Fastel; Wanduku, Divine . The odd Weibull-Topp-Leone-G power series family of  distributions: model, properties, and applications. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 268-286. doi : 10.22436/jnsa.014.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.06/

[1] Aalen, O. O. Heterogeneity in Survival Analysis, Statistics in Medicine, Volume 7 (1988), pp. 1121-1137 | DOI

[2] Aldahlan, M. A. D.; Afify, A. Z. The odd exponentiated half-logistic Burr XII distribution, Pak. J. Stat. Oper. Res., Volume 14 (2018), pp. 305-317

[3] Alizadeh, M.; Afify, A. Z.; Eliwa, M. S.; Ali, S. The Odd Log-Logistic Lindley-G Family of Distributions: Properties, Bayesian and Non-Bayesian Estimation with Applications, Comput. Stat., Volume 35 (2020), pp. 281-308

[4] Al-Saiary, Z. A.; Bakoban, R. A. The Topp-Leone Generalized Inverted Exponential Distribution with Real Data Applications, Entropy, Volume 22 (2020), pp. 1-15 | DOI

[5] Al-Shomrani, A.; Arif, O.; Shawky, A.; Hanif, S.; Shahbaz, M. Q. Topp-Leone family of distributions: Some properties and application, Pak. J. Stat. Oper. Res., Volume 12 (2016), pp. 443-451

[6] Aryal1, R. G.; Ortega, E. M.; Hamedani, G. G.; Yousof, H. M. The Topp-Leone Generated Weibull Distribution: Regression Model, Characterizations and Applications, Int. J. Stat. Prob., Volume 6 (2017), pp. 126-141

[7] Bidram, H.; Nekoukhou, V. Double Bounded Kumaraswamy-Power Series Class of Distributions, SORT, Volume 37 (2013), pp. 211-230

[8] Chipepa, F.; Oluyede, B.; Chamunorwa, S. The odd Weibull-Topp-Leone-G Family of Distributions: Model, Properties and Applications, To Appear, , 2020

[9] Chipepa, F.; Oluyede, B. O.; Makubate, B. A New Generalized Family of Odd Lindley-G Distributions with Application, Int. J. Stat. Prob., Volume 8 (2019), pp. 1-23 | DOI

[10] Chipepa, F.; Oluyede, B.; Makubate, B. The Odd Generalized Half-Logistic Weibull-G Family of Distributions: Properties and Applications, J. Stat. Model. Theor. Appl., Volume 2020 (2020), pp. 1-25

[11] Chipepa, F.; B.Oluyede; Makubate, B. The Topp-Leone-Marshall-Olkin-G Family of Distributions with Applications, Int. J. Stat. Prob., Volume 9 (2020), pp. 15-32 | DOI

[12] Chipepa, F.; Oluyede, B.; Makubate, B.; Fagbamigbe, A. The Beta Odd Lindley-G Family of Distributions with Applications, J. Prob. Stat. Sci., Volume 17 (2019), pp. 51-84

[13] Cordeiro, G. M.; Gomes, A. E.; da-Silva, C. Q.; Ortega, E. M. M. The Beta Exponentiated Weibull Distribution, J. Stat. Comput. Simul., Volume 83 (2013), pp. 114-138

[14] Cordeiro, G. M.; Ortega, E. M. M.; Nadarajaah, S. The Kumaraswamy Weibull Distribution with Application to Failure Data, J. Franklin Inst., Volume 347 (2010), pp. 1399-1429

[15] Cordeiro, G. M.; Silva, R. B. The Complementary Extended Weibull Power Series Class of Distributions, Ciência e Natura, Volume 36 (2014), pp. 1-13

[16] Gomes-Silva, F.; Percontini, A.; Brito, E. de; Ramos, M. W.; Venancio, R; Cordeiro, G. M. The odd Lindley-G family of distributions, Aust. J. Stat., Volume 46 (2017), pp. 65-87

[17] Gradshetyn, I. S.; Ryzhik, I. M. Tables of Integrals, Series and Products, Sixth edition, Academic Press, San Diego, 2000

[18] Gurvich, M. R.; DiBenedetto, A. T. ; Ranade, S. V. A New Statistical Distribution for Characterizing the Random Strength of Brittle Materials, J. Mat. Sci., Volume 32 (1997), pp. 2559-2564

[19] Harandi, S. S.; Alamatsaz, M. H. Generalized Linear Failure Rate Power Series Distribution, Comm. Statist. Theory Methods, Volume 45 (2016), pp. 2204-2227

[20] Ibrahim, M.; Yousof, H. Transmuted Topp-Leone Weibull Lifetime Distribution: Statistical Properties and Different Method of Estimation, Pak. J. Stat. Oper. Res., Volume 16 (2020), pp. 501-515 | DOI

[21] Johnson, N. L.; Kotz, S. ; Balakrishnan, N. Continuous univariate distributions, John Wiley & Sons, New York, 1994

[22] Jorgensen, B. Statistical Properties of the Generalized Inverse Gaussian Distribution, Springer-Verlag, New York, 1982

[23] Korkmaz, M. C.; Yousof, H. M.; Hamedani, G. G. The Exponential Lindley Odd Log-Logistic-G Family: Properties, Characterizations and Applications, J. Stat. Theory Appl., Volume 17 (2018), pp. 554-571

[24] Mahmoudi, E.; Jafari, A. A. Generalized Exponential-Power Series Distributions, Comput. Statist. Data Anal., Volume 56 (2012), pp. 4047-4066

[25] Mahmoudi, E.; Jafari, A. A. The Compound Class of Linear Failure Rate-Power Series Distributions: Model, Properties, and Applications, Comm. Statist. Simulation Comput., Volume 46 (2017), pp. 1414-1440

[26] Morais, A. L.; Barreto-Souza, W. A Compound Class of Weibull and Power Series Distributions, Comput. Statist. Data Anal., Volume 55 (2011), pp. 1410-1425

[27] Pena-Ramirez, F. A.; Guerra, R. R. ; Cordeiro, G. M.; Marinho, P. R. D. The Exponentiated Power Generalized Weibull: Properties and Applications, An. Acad. Brasil. Ciênc., Volume 90 (2018), pp. 2553-2577

[28] Rényi, A. On Measures of Entropy and Information, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Univ. California Press, Berkeley, Volume 1961 (1961), pp. 547-561

[29] Shannon, C. E. Prediction and Entropy of Printed English, The Bell System Technical J., Volume 30 (1951), pp. 50-64

[30] Silva, R. B.; Bourguignon, M.; Dias, C. R. B.; Cordeiro, G. M. The Compound Class of Extended Weibull Power Series Distributions, Comput. Statist. Data Anal., Volume 58 (2013), pp. 352-367

[31] Silva, R. B.; Cordeiro, G. M. The Burr XII Power Series Distributions: A New Compounding Family, Braz. J. Probab. Stat., Volume 29 (2015), pp. 565-589

Cité par Sources :