Voir la notice de l'article provenant de la source International Scientific Research Publications
Agrawal, P. N.  1 ; Kumar, Abhishek  1 ; Gangopadhyay, Aditi Kar  1 ; Garg, Tarul  2
@article{JNSA_2021_14_4_a3, author = {Agrawal, P. N. and Kumar, Abhishek and Gangopadhyay, Aditi Kar and Garg, Tarul }, title = {Generalized {Kantorovich-Sz\'asz} type operations involving {Charlier} polynomials}, journal = {Journal of nonlinear sciences and its applications}, pages = {222-249}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2021}, doi = {10.22436/jnsa.014.04.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.04/} }
TY - JOUR AU - Agrawal, P. N. AU - Kumar, Abhishek AU - Gangopadhyay, Aditi Kar AU - Garg, Tarul TI - Generalized Kantorovich-Szász type operations involving Charlier polynomials JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 222 EP - 249 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.04/ DO - 10.22436/jnsa.014.04.04 LA - en ID - JNSA_2021_14_4_a3 ER -
%0 Journal Article %A Agrawal, P. N. %A Kumar, Abhishek %A Gangopadhyay, Aditi Kar %A Garg, Tarul %T Generalized Kantorovich-Szász type operations involving Charlier polynomials %J Journal of nonlinear sciences and its applications %D 2021 %P 222-249 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.04/ %R 10.22436/jnsa.014.04.04 %G en %F JNSA_2021_14_4_a3
Agrawal, P. N. ; Kumar, Abhishek ; Gangopadhyay, Aditi Kar ; Garg, Tarul . Generalized Kantorovich-Szász type operations involving Charlier polynomials. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 222-249. doi : 10.22436/jnsa.014.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.04/
[1] Degree of approximation for bivariate Chlodowsky-Szasz-Charlier type operators, Results. Math., Volume 69 (2016), pp. 369-385 | DOI
[2] K-Functionals and moduli of smoothness of functions defined on compact metric spaces, Comput. Math. Appl., Volume 30 (1995), pp. 23-31 | DOI
[3] Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl., Volume 4 (1988), pp. 95-108
[4] Korovkin-type theorems for generalised Boolean sum operators, Approx. Theory (Kecskemat, Hungary), Colloq. Math. Soc. Janos Bolyai, Volume 58 (1990), pp. 51-67
[5] Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on q-integers, Appl. Math. Comput., Volume 259 (2015), pp. 80-87 | DOI
[6] Mehrdimensionale Differentiation von Funktionen mehrerer reeller Veränderlichen, J. Reine Angew. Math., Volume 170 (1934), pp. 197-217 | DOI
[7] Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew. Math., Volume 173 (1935), pp. 5-30 | DOI
[8] Über die mehrdimensionale differentiation, Jber. Deutsch. Math.-Verein., Volume 65 (1962), pp. 45-71 | EuDML
[9] Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967
[10] Constructive Approximation, Springer-Verlag, Berlin, 1993 | DOI
[11] Moduli of Smoothness, Springer-Verlag, New York, 1987 | DOI
[12] The approximation by Bernstein type polynomials of bidimensionally continuous functions, An. Univ. Timis¸oara Ser. S¸ ti. Mat.-Fiz., Volume 4 (1996), pp. 85-90
[13] Theorems of Korovkin type, Math. Notes, Volume 20 (1976), pp. 995-998 | DOI
[14] Recent Advances in Constructive Approximation Theory, Springer, Cham, 2018 | DOI
[15] The order of approximation of some unbounded functions by the sequences of positive linear operators, Turkish J. Math., Volume 19 (1995), pp. 331-337
[16] On Lipschitz-type maximal functions and their smoothness spaces, Indag. Math., Volume 53--63 (1988) | DOI
[17] Local approximation properties for certain King type operators, Filomat, Volume 27 (2013), pp. 173-181 | DOI
[18] Smoothness properties of modified Bernstein-Kantorovich operators, Numer. Funct. Anal. Optim., Volume 37 (2016), pp. 92-105 | DOI
[19] Theory of Interpolation of Normal Spaces, Lecture Notes, Brasilia, 1963
[20] Generalization of S. Bernstein’s polynomials to be infinite interval, J. Res. Natl. Bur. Stand., Volume 45 (1952), pp. 239-245
[21] A Non-linear Transformation for Sequences and Integrals, Thesis Master Sci., Graduate Faculty of Texas Thechnological College, 1968
[22] Szász type operators involving Charlier polynomials, Math. Comput. Model, Volume 56 (2012), pp. 118-122 | DOI
Cité par Sources :