Generalized Kantorovich-Szász type operations involving Charlier polynomials
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 222-249.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to introduce a new kind of Kantorovich-Szász type operators based on Charlier polynomials and study its various approximation properties. We establish some local direct theorems, e.g., Voronovskaja type asymptotic theorem and an estimate of error by means of the Lipschitz type maximal function and the Peetre's K-functional. We also discuss the weighted approximation properties. Next, we construct a bivariate case of the above operators and study the degree of approximation with the aid of the complete and partial moduli of continuity. A Voronovskaja type asymptotic theorem and the order of convergence by considering the second order modulus of continuity are also proved. We define the associated Generalized Boolean Sum (GBS) operators and discuss the degree of approximation by using mixed modulus of smoothness for Bögel continuous and Bögel differentiable functions. Furthermore, by means of a numerical example it is shown that the proposed operators provide us a better approximation than the operators corresponding to the particular case $\wp=1$. We also illustrate the convergence of the bivariate operators and the associated GBS operators to a certain function and show that the GBS operators enable us a better error estimation than the bivariate operators using Matlab algorithm.
DOI : 10.22436/jnsa.014.04.04
Classification : 47A58
Keywords: Voronovskaya theorem, moduli of continuity, Peetre's K-functional, Bögel continuous function, Bögel differentiable function

Agrawal, P. N.  1 ; Kumar, Abhishek  1 ; Gangopadhyay, Aditi Kar  1 ; Garg, Tarul  2

1 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India
2 Department of Applied Science, The NorthCap University, Gurugram-122017, India
@article{JNSA_2021_14_4_a3,
     author = {Agrawal, P. N.  and Kumar, Abhishek  and Gangopadhyay, Aditi Kar  and Garg, Tarul },
     title = {Generalized {Kantorovich-Sz\'asz} type operations involving {Charlier} polynomials},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {222-249},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     doi = {10.22436/jnsa.014.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.04/}
}
TY  - JOUR
AU  - Agrawal, P. N. 
AU  - Kumar, Abhishek 
AU  - Gangopadhyay, Aditi Kar 
AU  - Garg, Tarul 
TI  - Generalized Kantorovich-Szász type operations involving Charlier polynomials
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 222
EP  - 249
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.04/
DO  - 10.22436/jnsa.014.04.04
LA  - en
ID  - JNSA_2021_14_4_a3
ER  - 
%0 Journal Article
%A Agrawal, P. N. 
%A Kumar, Abhishek 
%A Gangopadhyay, Aditi Kar 
%A Garg, Tarul 
%T Generalized Kantorovich-Szász type operations involving Charlier polynomials
%J Journal of nonlinear sciences and its applications
%D 2021
%P 222-249
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.04/
%R 10.22436/jnsa.014.04.04
%G en
%F JNSA_2021_14_4_a3
Agrawal, P. N. ; Kumar, Abhishek ; Gangopadhyay, Aditi Kar ; Garg, Tarul . Generalized Kantorovich-Szász type operations involving Charlier polynomials. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 222-249. doi : 10.22436/jnsa.014.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.04/

[1] Agrawal, P. N.; Ispir, N. Degree of approximation for bivariate Chlodowsky-Szasz-Charlier type operators, Results. Math., Volume 69 (2016), pp. 369-385 | DOI

[2] Badea, C. K-Functionals and moduli of smoothness of functions defined on compact metric spaces, Comput. Math. Appl., Volume 30 (1995), pp. 23-31 | DOI

[3] Badea, C.; Badea, I.; Gonska, H. Notes on the degree of approximation of B-continuous and B-differentiable functions, J. Approx. Theory Appl., Volume 4 (1988), pp. 95-108

[4] Badea, C.; Cottin, C. Korovkin-type theorems for generalised Boolean sum operators, Approx. Theory (Kecskemat, Hungary), Colloq. Math. Soc. Janos Bolyai, Volume 58 (1990), pp. 51-67

[5] Barbosu, D.; Muraru, C. V. Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on q-integers, Appl. Math. Comput., Volume 259 (2015), pp. 80-87 | DOI

[6] Bogel, K. Mehrdimensionale Differentiation von Funktionen mehrerer reeller Veränderlichen, J. Reine Angew. Math., Volume 170 (1934), pp. 197-217 | DOI

[7] Bogel, K. Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew. Math., Volume 173 (1935), pp. 5-30 | DOI

[8] Bogel, K. Über die mehrdimensionale differentiation, Jber. Deutsch. Math.-Verein., Volume 65 (1962), pp. 45-71 | EuDML

[9] Butzer, P. L.; Berens, H. Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967

[10] Devore, R. A.; Lorentz, G. G. Constructive Approximation, Springer-Verlag, Berlin, 1993 | DOI

[11] Ditzian, Z.; Totik, V. Moduli of Smoothness, Springer-Verlag, New York, 1987 | DOI

[12] Dobrescu, E.; Matei, I. The approximation by Bernstein type polynomials of bidimensionally continuous functions, An. Univ. Timis¸oara Ser. S¸ ti. Mat.-Fiz., Volume 4 (1996), pp. 85-90

[13] Gadzhiev, A. D. Theorems of Korovkin type, Math. Notes, Volume 20 (1976), pp. 995-998 | DOI

[14] Gupta, V.; Rassias, T. M.; Agrawal, P. N.; Acu, A. M. Recent Advances in Constructive Approximation Theory, Springer, Cham, 2018 | DOI

[15] Ibikli, E.; Gadjiev, E. A. The order of approximation of some unbounded functions by the sequences of positive linear operators, Turkish J. Math., Volume 19 (1995), pp. 331-337

[16] Lenze, B. On Lipschitz-type maximal functions and their smoothness spaces, Indag. Math., Volume 53--63 (1988) | DOI

[17] Ozarslan, M. A.; Aktuglu, H. Local approximation properties for certain King type operators, Filomat, Volume 27 (2013), pp. 173-181 | DOI

[18] Ozarslan, M. A.; Duman, O. Smoothness properties of modified Bernstein-Kantorovich operators, Numer. Funct. Anal. Optim., Volume 37 (2016), pp. 92-105 | DOI

[19] Peetre, J. Theory of Interpolation of Normal Spaces, Lecture Notes, Brasilia, 1963

[20] Szasz, O. Generalization of S. Bernstein’s polynomials to be infinite interval, J. Res. Natl. Bur. Stand., Volume 45 (1952), pp. 239-245

[21] Theodore, B. S.; Hsu, H. A Non-linear Transformation for Sequences and Integrals, Thesis Master Sci., Graduate Faculty of Texas Thechnological College, 1968

[22] Varma, S.; Taşdelen, F. Szász type operators involving Charlier polynomials, Math. Comput. Model, Volume 56 (2012), pp. 118-122 | DOI

Cité par Sources :