$a$-minimal prime ideals in almost distributive lattices
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 212-221.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The concept of $a$-minimal prime ideal of an ADL is introduced and its characterizations are established. The set of all $a$-minimal prime ideals of an ADL is topologized and resulting space is studied.
DOI : 10.22436/jnsa.014.04.03
Classification : 06D99
Keywords: ADL, minimal prime ideal, relative, \(a\)-annihilator, \(a\)-minimal prime ideal, \(a\)-maximal filter, \(a\)-pseudo complementation, hull-kernel topology

Raj, Ch. Santhi Sundar  1 ; Rao, K. Ramanuja  2 ; Rao, S. Nageswara  1

1 Department of Engineering Mathematics, Andhra University, Visakhapatnam, 530003, India
2 Deaprtment of Mathematics, Fiji National Uniersity, Lautoka, FIJI
@article{JNSA_2021_14_4_a2,
     author = {Raj, Ch. Santhi Sundar  and Rao, K. Ramanuja  and Rao, S. Nageswara },
     title = {\(a\)-minimal prime ideals in almost distributive lattices},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {212-221},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     doi = {10.22436/jnsa.014.04.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.03/}
}
TY  - JOUR
AU  - Raj, Ch. Santhi Sundar 
AU  - Rao, K. Ramanuja 
AU  - Rao, S. Nageswara 
TI  - \(a\)-minimal prime ideals in almost distributive lattices
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 212
EP  - 221
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.03/
DO  - 10.22436/jnsa.014.04.03
LA  - en
ID  - JNSA_2021_14_4_a2
ER  - 
%0 Journal Article
%A Raj, Ch. Santhi Sundar 
%A Rao, K. Ramanuja 
%A Rao, S. Nageswara 
%T \(a\)-minimal prime ideals in almost distributive lattices
%J Journal of nonlinear sciences and its applications
%D 2021
%P 212-221
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.03/
%R 10.22436/jnsa.014.04.03
%G en
%F JNSA_2021_14_4_a2
Raj, Ch. Santhi Sundar ; Rao, K. Ramanuja ; Rao, S. Nageswara . \(a\)-minimal prime ideals in almost distributive lattices. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 212-221. doi : 10.22436/jnsa.014.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.03/

[1] Grätzer, G. General Lattice Theory, Academic Press, New York-London, 1978

[2] Mandelker, M. Relative annhilators in lattices, Duke Math. J., Volume 37 (1970), pp. 377-386

[3] Rao, G. C.; Kumar, S. Ravi Minimal prime ideals in Almost Distributive Lattices, Int. J. Contemp. Math. Sci., Volume 4 (2009), pp. 475-484

[4] Raj, C. S. Sundar; Rao, S. N.; Rao, K. R. $\mathtt{a}$-Maximal filters in Almost Distributive Lattices, J. Int. Math. Virtual Inst., Volume 10 (2020), pp. 309-324

[5] Raj, C. S. Sundar; Rao, S. N.; Rao, K. R. $\mathtt{a}$-pseudo complementation on an ADL's, Asian-Eur. J. Math., Volume 2020 (2020) | DOI

[6] Raj, C. S. Sundar; Rao, S. N.; Santhi, M.; Rao, K. R Relative pseudo-complementations on ADL'S, Int. J. Math. Soft Comput., Volume 7 (2017), pp. 95-108

[7] Swamy, U. M.; Rao, G. C. Almost Distributive Lattices, J. Austral. Math. Soc. Ser A, Volume 31 (1981), pp. 77-91

[8] Swamy, U. M.; Rao, G. C.; Rao, G. Nanaji Pseudo-complementation on Almost Distributive Lattices, Southeast Asian Bull. Math., Volume 24 (2000), pp. 95-104

[9] Varlet, J. C. Relative annihilators in semilattices, Bull. Austral. Math. Soc., Volume 9 (1973), pp. 169-185

Cité par Sources :