Voir la notice de l'article provenant de la source International Scientific Research Publications
Yan, Hairong  1 ; Li, Jinxian  1
@article{JNSA_2021_14_4_a1, author = {Yan, Hairong and Li, Jinxian }, title = {SIQR dynamics in a random network with heterogeneous connections with infection age}, journal = {Journal of nonlinear sciences and its applications}, pages = {196-211}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2021}, doi = {10.22436/jnsa.014.04.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.02/} }
TY - JOUR AU - Yan, Hairong AU - Li, Jinxian TI - SIQR dynamics in a random network with heterogeneous connections with infection age JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 196 EP - 211 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.02/ DO - 10.22436/jnsa.014.04.02 LA - en ID - JNSA_2021_14_4_a1 ER -
%0 Journal Article %A Yan, Hairong %A Li, Jinxian %T SIQR dynamics in a random network with heterogeneous connections with infection age %J Journal of nonlinear sciences and its applications %D 2021 %P 196-211 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.02/ %R 10.22436/jnsa.014.04.02 %G en %F JNSA_2021_14_4_a1
Yan, Hairong ; Li, Jinxian . SIQR dynamics in a random network with heterogeneous connections with infection age. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 196-211. doi : 10.22436/jnsa.014.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.02/
[1] Infectious diseases of humans: dynamics and control, Oxford University Press, New York, 1992
[2] Susceptible-infected-susceptible epidemics on networks with general infection and cure times, Phys. Rev. E, Volume 87 (2013), pp. 1-7 | DOI
[3] Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks, Bull. Math. Biol., Volume 80 (2018), pp. 2049-2087 | DOI
[4] SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn., Volume 101 (2020), pp. 1667-1680 | DOI
[5] Nonautonomous SEIRS and Thron models for epidemiology and cell biology, Nonlinear Anal. Real World Appl., Volume 5 (2004), pp. 33-44 | DOI
[6] An SIR pairwise epidemic model with infection age and demography, J. Biol. Dyn., Volume 12 (2018), pp. 486-508 | DOI
[7] Generalization of Pairwise Models to non-Markovian Epidemics on Networks, Phys. Rev. Lett., Volume 115 (2015), pp. 1-5 | DOI
[8] Global dynamics analysis of an SEIR epidemic model with discrete delay on complex network, Phys. A, Volume 524 (2019), pp. 289-296 | DOI
[9] Epidemic spreading of an SEIRS model in scale-free networks, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 3375-3384 | DOI
[10] Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., Volume 3 (2006), pp. 161-172 | DOI
[11] An Introduction to Mathematical Epidemiology, Springer, New York, 2015 | DOI
[12] Epidemic size and probability in populations with heterogeneous infectivity and susceptibility, Phys. Rev. E, Volume 76 (2007), pp. 1-4 | DOI
[13] A note on a paper by Erik Volz: SIR dynamics in random networks, J. Math. Biol., Volume 62 (2011), pp. 349-358 | DOI
[14] Analytical solution of SEIR model describing the free spread of the COVID-19 pandemic, Chaos, Solitons and Fractals, Volume 140 (2020), pp. 1-6 | DOI
[15] Management strategies in a seir model of COVID-19 community spread, Physics and Society, Volume 2020 (2020), pp. 1-21
[16] Pairwise approximation for SIR-type network epidemics with non-Markovian recovery, Proc. A., Volume 474 (2018), pp. 1-21 | DOI
[17] Mean-field models for non-Markovian epidemics on networks, J. Math. Biol., Volume 76 (2018), pp. 755-778 | DOI
[18] SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol., Volume 56 (2008), pp. 293-310 | DOI
[19] Evolutionary Dynamics of Stochastic SEIR Models with Migration and Human Awareness in Complex Networks, Complexity, Volume 2020 (2020), pp. 1-15 | DOI
[20] Transmission dynamics of a two-strain pairwise model with infection age, Appl. Math. Model., Volume 71 (2019), pp. 656-672 | DOI
[21] Global dynamics of an SEIR epidemic model with saturating contact rate, Math. Biosci., Volume 185 (2003), pp. 15-32 | DOI
[22] On a nonautonomous SEIRS model in epidemiology, Bull. Math. Biol., Volume 69 (2007), pp. 2537-2559 | DOI
[23] Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV, Evid. Based Med., Volume 13 (2020), pp. 3-7 | DOI
[24] Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks, Appl. Math. Model., Volume 36 (2012), pp. 5808-5817 | DOI
Cité par Sources :