SIQR dynamics in a random network with heterogeneous connections with infection age
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 196-211.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, an SIQR-Epidemic transmission model of the non-Markovian infection process and quarantine process in a heterogeneous complex network is established, in which the infection rate and quarantine rate are related to infection age. Next, we use the method of characteristics to transform the model into an integro-differential equation and derive the epidemic threshold of the model. Finally, we focus on the impact of three different infection or quarantine time distributions on the disease transmission and show that infection or quarantine time distribution has a significant effect on the disease dynamics.
DOI : 10.22436/jnsa.014.04.02
Classification : 05C82, 37N25, 92D25
Keywords: SIQR-epidemic, complex network, infection age, non-Markovian transmission and quarantine, epidemic threshold

Yan, Hairong  1 ; Li, Jinxian  1

1 School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, P.R. China
@article{JNSA_2021_14_4_a1,
     author = {Yan, Hairong  and Li, Jinxian },
     title = {SIQR dynamics in a random network with heterogeneous connections with infection age},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {196-211},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     doi = {10.22436/jnsa.014.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.02/}
}
TY  - JOUR
AU  - Yan, Hairong 
AU  - Li, Jinxian 
TI  - SIQR dynamics in a random network with heterogeneous connections with infection age
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 196
EP  - 211
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.02/
DO  - 10.22436/jnsa.014.04.02
LA  - en
ID  - JNSA_2021_14_4_a1
ER  - 
%0 Journal Article
%A Yan, Hairong 
%A Li, Jinxian 
%T SIQR dynamics in a random network with heterogeneous connections with infection age
%J Journal of nonlinear sciences and its applications
%D 2021
%P 196-211
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.02/
%R 10.22436/jnsa.014.04.02
%G en
%F JNSA_2021_14_4_a1
Yan, Hairong ; Li, Jinxian . SIQR dynamics in a random network with heterogeneous connections with infection age. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 196-211. doi : 10.22436/jnsa.014.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.02/

[1] Anderson, R. M.; May, R. M. Infectious diseases of humans: dynamics and control, Oxford University Press, New York, 1992

[2] Cator, E.; Bovenkamp, R. Van de; Mieghem, P. Van Susceptible-infected-susceptible epidemics on networks with general infection and cure times, Phys. Rev. E, Volume 87 (2013), pp. 1-7 | DOI

[3] Chen, S.; Small, M.; Tao, Y.; Fu, X. Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks, Bull. Math. Biol., Volume 80 (2018), pp. 2049-2087 | DOI

[4] He, S.; Peng, Y.; Sun, K. SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn., Volume 101 (2020), pp. 1667-1680 | DOI

[5] Herzog, G.; Redheffer, R. Nonautonomous SEIRS and Thron models for epidemiology and cell biology, Nonlinear Anal. Real World Appl., Volume 5 (2004), pp. 33-44 | DOI

[6] Jing, W.; Jin, Z.; Zhang, J. An SIR pairwise epidemic model with infection age and demography, J. Biol. Dyn., Volume 12 (2018), pp. 486-508 | DOI

[7] Kiss, I. Z.; Rost, G.; Vizi, Z. Generalization of Pairwise Models to non-Markovian Epidemics on Networks, Phys. Rev. Lett., Volume 115 (2015), pp. 1-5 | DOI

[8] Liu, Q.; Li, H. Global dynamics analysis of an SEIR epidemic model with discrete delay on complex network, Phys. A, Volume 524 (2019), pp. 289-296 | DOI

[9] Liu, J.; Zhang, T. Epidemic spreading of an SEIRS model in scale-free networks, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 3375-3384 | DOI

[10] Ma, J.; Ma, Z. Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., Volume 3 (2006), pp. 161-172 | DOI

[11] Martcheva, M. An Introduction to Mathematical Epidemiology, Springer, New York, 2015 | DOI

[12] Miller, J. C. Epidemic size and probability in populations with heterogeneous infectivity and susceptibility, Phys. Rev. E, Volume 76 (2007), pp. 1-4 | DOI

[13] Miller, J. C. A note on a paper by Erik Volz: SIR dynamics in random networks, J. Math. Biol., Volume 62 (2011), pp. 349-358 | DOI

[14] Piovella, N. Analytical solution of SEIR model describing the free spread of the COVID-19 pandemic, Chaos, Solitons and Fractals, Volume 140 (2020), pp. 1-6 | DOI

[15] Radulescu, A.; Williams, C.; Cavanagh, K. Management strategies in a seir model of COVID-19 community spread, Physics and Society, Volume 2020 (2020), pp. 1-21

[16] Rost, G.; Vizi, Z.; Kiss, I. Z. Pairwise approximation for SIR-type network epidemics with non-Markovian recovery, Proc. A., Volume 474 (2018), pp. 1-21 | DOI

[17] Sherborne, N.; Miller, J. C.; Blyuss, K. B.; Kiss, I. Z. Mean-field models for non-Markovian epidemics on networks, J. Math. Biol., Volume 76 (2018), pp. 755-778 | DOI

[18] Volz, E. SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol., Volume 56 (2008), pp. 293-310 | DOI

[19] Zhang, Y.; Li, Y. Evolutionary Dynamics of Stochastic SEIR Models with Migration and Human Awareness in Complex Networks, Complexity, Volume 2020 (2020), pp. 1-15 | DOI

[20] Zhang, J.; Li, D.; Jing, W.; Jin, Z.; Zhu, H. Transmission dynamics of a two-strain pairwise model with infection age, Appl. Math. Model., Volume 71 (2019), pp. 656-672 | DOI

[21] Zhang, J.; Ma, Z. Global dynamics of an SEIR epidemic model with saturating contact rate, Math. Biosci., Volume 185 (2003), pp. 15-32 | DOI

[22] Zhang, T.; Teng, Z. On a nonautonomous SEIRS model in epidemiology, Bull. Math. Biol., Volume 69 (2007), pp. 2537-2559 | DOI

[23] Zhou, T.; Liu, Q.; Yang, Z.; Liao, J.; Yang, K.; Bai, W.; Lu, X.; Zhang, W. Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV, Evid. Based Med., Volume 13 (2020), pp. 3-7 | DOI

[24] Zhu, G.; Fu, X.; Chen, G. Spreading dynamics and global stability of a generalized epidemic model on complex heterogeneous networks, Appl. Math. Model., Volume 36 (2012), pp. 5808-5817 | DOI

Cité par Sources :