Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 181-195.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Here, we investigate the existence result for a nonlinear quadratic functional integral equation of fractional order using a fixed point theorem of Dhage. The continuous dependence of solution on the delay functions will be studied. As an application, an existence theorem for the fractional hybrid differential equations is proved. Also, we study a general quadratic integral equation of fractional order.
DOI : 10.22436/jnsa.014.04.01
Classification : 26A33, 45D05, 34A99
Keywords: Dhage fixed point theorem, continuous dependence of solutions, hybrid differential equations, general quadratic integral equation

Al-Issa, Sh. M.  1 ; Mawed, N. M.  2

1 Department of Mathematics, faculty of Art and Science, Lebanese International University, Beirut, Lebanon;Department of Mathematics, faculty of Art and Science, Lebanese International University, Saida, Lebanon
2 Department of Mathematics, faculty of Art and Science, Lebanese International University, Saida, Lebanon
@article{JNSA_2021_14_4_a0,
     author = {Al-Issa, Sh. M.  and Mawed, N. M. },
     title = {Results on solvability  of   nonlinear quadratic integral equations of fractional orders in {Banach} algebra},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {181-195},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     doi = {10.22436/jnsa.014.04.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.01/}
}
TY  - JOUR
AU  - Al-Issa, Sh. M. 
AU  - Mawed, N. M. 
TI  - Results on solvability  of   nonlinear quadratic integral equations of fractional orders in Banach algebra
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 181
EP  - 195
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.01/
DO  - 10.22436/jnsa.014.04.01
LA  - en
ID  - JNSA_2021_14_4_a0
ER  - 
%0 Journal Article
%A Al-Issa, Sh. M. 
%A Mawed, N. M. 
%T Results on solvability  of   nonlinear quadratic integral equations of fractional orders in Banach algebra
%J Journal of nonlinear sciences and its applications
%D 2021
%P 181-195
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.01/
%R 10.22436/jnsa.014.04.01
%G en
%F JNSA_2021_14_4_a0
Al-Issa, Sh. M. ; Mawed, N. M. . Results on solvability  of   nonlinear quadratic integral equations of fractional orders in Banach algebra. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 181-195. doi : 10.22436/jnsa.014.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.01/

[1] Al-Issa, S.; El-Sayed, A. M. A. Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Comment. Math., Volume 49 (2009), pp. 171-177 | Zbl

[2] Banaś, J.; Martin, J. R.; Sadarangani, K. On the solution of a quadratic integral equation of Hammerstein type, Math. Comput. Model., Volume 43 (2006), pp. 97-104

[3] Banaś, J.; Martinon, A. Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., Volume 47 (2004), pp. 271-279

[4] Darwish, M. A.; Sadarangani, K. Existence of solutions for hybrid fractional pantograph equations, Appl. Anal. Discrete Math., Volume 9 (2015), pp. 150-167

[5] Dhage, B. C. A fixed point theorem in Banach algebras involving three operators with applications, Kyungpook Math. J., Volume 44 (2004), pp. 145-155

[6] Dhage, B. C. A nonlinear alternative in Banach algebras with applications to functional differential equations, Nonlinear Funct. Anal. Appl., Volume 9 (2004), pp. 563-575

[7] Dhage, B. C.; Karande, B. D. First order integro-differential equations in Banach algebras involving Caratheodory and discontinuous nonlinearities, Electron. J. Qual. Theory Differ. Equ., Volume 2005 (2005), pp. 1-16

[8] El-Sayed, A. M. A.; Al-Issa, S. M. Global Integrable Solution for a Nonlinear Functional Integral Inclusion, SRX Math., Volume 2010 (2010), pp. 1-4 | DOI

[9] El-Sayed, A. M. A.; Al-Issa, S. M. Monotonic continuous solution for a mixed type integral inclusion of fractional order, J. Math. Appl., Volume 33 (2010), pp. 27-34 | Zbl

[10] El-Sayed, A. M. A.; Al-Issa, S. M. Existence of continuous solutions for nonlinear functional differential and integral inclusions, Malaya J. Mat., Volume 7 (2019), pp. 541-544 | DOI

[11] El-Sayed, A. M. A.; Al-Issa, S. M. Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, Int. J. Differ. Equations Appl., Volume 18 (2019), pp. 1-10

[12] El-Sayed, A. M. A.; Al-Issa, S. M. Monotonic solutions for a quadratic integral equation of fractional order, AIMS Mathematics, Volume 4 (2019), pp. 821-830

[13] El-Sayed, A. M. A.; Al-Issa, S. M. On a set-valued functional integral equation of Volterra-Stiltjes type, J. Math. Computer Sci., Volume 21 (2020), pp. 273-285

[14] El-Sayed, A.; Hashem, H. Existence results for nonlinear quadratic integral equations of fractional order in Banach algebra, Fract. Calc. Appl. Anal., Volume 16 (2013), pp. 816-826

[15] El-Sayed, A.; Hashem, H.; Al-Issa, S. Existence of solutions for an ordinary second-order hybrid functional differential equation, Adv. Difference Equ., Volume 2020 (2020), pp. 1-10

[16] Herzallah, M. A. E.; Baleanu, D. On Fractional Order Hybrid Differential Equations, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7

[17] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006 | Zbl

[18] Krasnoselskii, M. A. Topological Methods in the Theory of Nonlinear Integral Equations, The American Mathematical Monthly, Volume 75 (1964), pp. 318-319

[19] Long, W.; Zhng, X.-J.; Li, L. Existence of periodic solutions for a class of functional integral equations, Electron. J. Qual. Theory Differ. Equ., Volume 2012 (2012), pp. 1-11

[20] Melliani, S.; Hilal, K.; Hannabou, M. Existence results in the theory of hybrid fractional integro-differential equations, J. Univer. Math., Volume 1 (2018), pp. 166-179

[21] Metwali, M. M. A. On a class of quadratic Urysohn-Hammerstein integral equations of mixed type and initial value problem of fractional order, Mediterr. J. Math., Volume 13 (2016), pp. 2691-2707

[22] Miller, K. S.; Ross, B. An Introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York, 1993 | Zbl

[23] Podlubny, I. Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, 1999

[24] Podlubny, I.; EL-Sayed, A. M. A. On two defintions of fractional calculus, Solvak Academy Sci.-Ins. Eyperimental Phys., Volume 1996 (1996), pp. 3-96

[25] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Integrals and Derivatives of Fractional Orders and Some of their Applications, Nauka i Teknika, Minsk, 1987

[26] Zhao, Y.; Sun, S. R.; Han, Z. L.; Li, Q. P. Theory of fractional hybrid differential equations, Comput. Math. Appl., Volume 62 (2011), pp. 1312-1324

[27] Zheng, L.; Zhang, X. Modeling and analysis of modern fluid problems, Elsevier/Academic Press, London, 2017

Cité par Sources :