Voir la notice de l'article provenant de la source International Scientific Research Publications
Al-Issa, Sh. M.  1 ; Mawed, N. M.  2
@article{JNSA_2021_14_4_a0, author = {Al-Issa, Sh. M. and Mawed, N. M. }, title = {Results on solvability of nonlinear quadratic integral equations of fractional orders in {Banach} algebra}, journal = {Journal of nonlinear sciences and its applications}, pages = {181-195}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2021}, doi = {10.22436/jnsa.014.04.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.01/} }
TY - JOUR AU - Al-Issa, Sh. M. AU - Mawed, N. M. TI - Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 181 EP - 195 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.01/ DO - 10.22436/jnsa.014.04.01 LA - en ID - JNSA_2021_14_4_a0 ER -
%0 Journal Article %A Al-Issa, Sh. M. %A Mawed, N. M. %T Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra %J Journal of nonlinear sciences and its applications %D 2021 %P 181-195 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.01/ %R 10.22436/jnsa.014.04.01 %G en %F JNSA_2021_14_4_a0
Al-Issa, Sh. M. ; Mawed, N. M. . Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 4, p. 181-195. doi : 10.22436/jnsa.014.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.04.01/
[1] Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Comment. Math., Volume 49 (2009), pp. 171-177 | Zbl
[2] On the solution of a quadratic integral equation of Hammerstein type, Math. Comput. Model., Volume 43 (2006), pp. 97-104
[3] Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., Volume 47 (2004), pp. 271-279
[4] Existence of solutions for hybrid fractional pantograph equations, Appl. Anal. Discrete Math., Volume 9 (2015), pp. 150-167
[5] A fixed point theorem in Banach algebras involving three operators with applications, Kyungpook Math. J., Volume 44 (2004), pp. 145-155
[6] A nonlinear alternative in Banach algebras with applications to functional differential equations, Nonlinear Funct. Anal. Appl., Volume 9 (2004), pp. 563-575
[7] First order integro-differential equations in Banach algebras involving Caratheodory and discontinuous nonlinearities, Electron. J. Qual. Theory Differ. Equ., Volume 2005 (2005), pp. 1-16
[8] Global Integrable Solution for a Nonlinear Functional Integral Inclusion, SRX Math., Volume 2010 (2010), pp. 1-4 | DOI
[9] Monotonic continuous solution for a mixed type integral inclusion of fractional order, J. Math. Appl., Volume 33 (2010), pp. 27-34 | Zbl
[10] Existence of continuous solutions for nonlinear functional differential and integral inclusions, Malaya J. Mat., Volume 7 (2019), pp. 541-544 | DOI
[11] Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, Int. J. Differ. Equations Appl., Volume 18 (2019), pp. 1-10
[12] Monotonic solutions for a quadratic integral equation of fractional order, AIMS Mathematics, Volume 4 (2019), pp. 821-830
[13] On a set-valued functional integral equation of Volterra-Stiltjes type, J. Math. Computer Sci., Volume 21 (2020), pp. 273-285
[14] Existence results for nonlinear quadratic integral equations of fractional order in Banach algebra, Fract. Calc. Appl. Anal., Volume 16 (2013), pp. 816-826
[15] Existence of solutions for an ordinary second-order hybrid functional differential equation, Adv. Difference Equ., Volume 2020 (2020), pp. 1-10
[16] On Fractional Order Hybrid Differential Equations, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7
[17] Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006 | Zbl
[18] Topological Methods in the Theory of Nonlinear Integral Equations, The American Mathematical Monthly, Volume 75 (1964), pp. 318-319
[19] Existence of periodic solutions for a class of functional integral equations, Electron. J. Qual. Theory Differ. Equ., Volume 2012 (2012), pp. 1-11
[20] Existence results in the theory of hybrid fractional integro-differential equations, J. Univer. Math., Volume 1 (2018), pp. 166-179
[21] On a class of quadratic Urysohn-Hammerstein integral equations of mixed type and initial value problem of fractional order, Mediterr. J. Math., Volume 13 (2016), pp. 2691-2707
[22] An Introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York, 1993 | Zbl
[23] Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, 1999
[24] On two defintions of fractional calculus, Solvak Academy Sci.-Ins. Eyperimental Phys., Volume 1996 (1996), pp. 3-96
[25] Integrals and Derivatives of Fractional Orders and Some of their Applications, Nauka i Teknika, Minsk, 1987
[26] Theory of fractional hybrid differential equations, Comput. Math. Appl., Volume 62 (2011), pp. 1312-1324
[27] Modeling and analysis of modern fluid problems, Elsevier/Academic Press, London, 2017
Cité par Sources :