On the stability of a sum form functional equation related to entropies of type ($\alpha,\beta$)
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 168-180.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we discuss the stability of the sum form functional equation
$ \sum\limits _{i=1}^{n}\sum\limits _{j=1}^{m}f(p_{i} q_{j} ) =\sum\limits _{i=1}^{n}g(p_{i}) \sum\limits _{j=1}^{m}f(q_{j} )+\sum\limits _{i=1}^{n}f(p_{i}) \sum\limits _{j=1}^{m}q_{j}^{\beta } $
for all complete probability distributions $(p_1,\ldots,p_n)\in \Gamma_n$, $(q_1,\ldots,q_m)\in \Gamma_m$, $n\ge 3$, $m\ge 3$ are fixed integers, $f$, $g$ are real valued mappings each having the domain $I=[0,1]$ and $\beta$ is a fixed positive real power such that $\beta \neq 1$, $0^\beta:=0$, $1^\beta:=1$.
DOI : 10.22436/jnsa.014.03.06
Classification : 39B52, 39B82
Keywords: Stability, additive mapping, logarithmic mapping, multiplicative mapping, bounded mapping, entropies of type \((\alpha,\beta)\)

Singh, Dhiraj Kumar  1 ; Grover, Shveta  2

1 Department of Mathematics, Zakir Husain Delhi College (University of Delhi), Jawaharlal Nehru Marg, Delhi 110002, India
2 Department of Mathematics, University of Delhi, Delhi 110007, India
@article{JNSA_2021_14_3_a5,
     author = {Singh, Dhiraj Kumar  and Grover, Shveta },
     title = {On the stability of a sum form functional equation related to entropies of type (\(\alpha,\beta\))},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {168-180},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     doi = {10.22436/jnsa.014.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.06/}
}
TY  - JOUR
AU  - Singh, Dhiraj Kumar 
AU  - Grover, Shveta 
TI  - On the stability of a sum form functional equation related to entropies of type (\(\alpha,\beta\))
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 168
EP  - 180
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.06/
DO  - 10.22436/jnsa.014.03.06
LA  - en
ID  - JNSA_2021_14_3_a5
ER  - 
%0 Journal Article
%A Singh, Dhiraj Kumar 
%A Grover, Shveta 
%T On the stability of a sum form functional equation related to entropies of type (\(\alpha,\beta\))
%J Journal of nonlinear sciences and its applications
%D 2021
%P 168-180
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.06/
%R 10.22436/jnsa.014.03.06
%G en
%F JNSA_2021_14_3_a5
Singh, Dhiraj Kumar ; Grover, Shveta . On the stability of a sum form functional equation related to entropies of type (\(\alpha,\beta\)). Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 168-180. doi : 10.22436/jnsa.014.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.06/

[1] Aczél, J. Lectures on functional equations and their applications, Academic Press, New York-London, 1966

[2] Behara, M.; Nath, P. Information and entropy of countable measurable partitions. I, Kybernetika (Prague), Volume 10 (1974), pp. 491-503

[3] Daróczy, Z.; Losonczi, L. Über die Erweiterung der auf einer Punktmenge additiven Funktionen, Publ. Math. Debrecen, Volume 14 (1967), pp. 239-245

[4] Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural $\alpha$-entropy, Kybernetika (Prague), Volume 3 (1967), pp. 30-35

[5] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224

[6] Kannappan, P. An application of a differential equation in information theory, Glasnik Mat. Ser. III, Volume 14 (1979), pp. 269-274

[7] Kannappan, P. On a generalization of sum form functional equation. III, Demonstratio Math., Volume 13 (1980), pp. 749-754 | Zbl

[8] Kocsis, I. On the stability of a sum form functional equation of multiplicative type, Acta Acad. Paedagog. Agriensis Sect. Math. (N.S.), Volume 28 (2001), pp. 43-53

[9] Kocsis, I.; Maksa, G. The stability of a sum form functional equation arising in information theory, Acta Math. Hungar., Volume 79 (1998), pp. 39-48

[10] Losonczi, L.; Maksa, G. The general solution of a functional equation of information theory, Glasnik Mat. Ser. III, Volume 16 (1981), pp. 261-268

[11] Losonzi, L.; Maksa, G. On some functional equations of the information theory, Acta Math. Acad. Sci. Hungar., Volume 39 (1982), pp. 73-82

[12] Maksa, G. On the stability of a sum form equation, Results Math., Volume 26 (1994), pp. 342-347

[13] Nath, P. On some functional equations and their applications, Publ. Inst. Math. (Beograd) (N.S.), Volume 20 (1976), pp. 191-201

[14] Nath, P.; Singh, D. K. On a sum form functional equation related to entropies of type $(\alpha,\beta)$, Asian-Eur. J. Math., Volume 6 (2013), pp. 1-13

[15] Nath, P.; Singh, D. K. On a sum form functional equation related to various nonadditive entropies in information theory, Tamsui Oxf. J. Inf. Math. Sci., Volume 30 (2014), pp. 23-43

[16] Nath, P.; Singh, D. K. On an equation related to nonadditive entropies in information theory, Math. Appl. (Brno), Volume 6 (2017), pp. 31-41

[17] Nath, P.; Singh, D. K. On the stability of a functional equation, Palestine J. Math., Volume 6 (2017), pp. 573-579

[18] Singh, D. K.; Dass, P. On a functional equation related to some entropies in information theory, J. Discrete Math. Sci. Cryptogr., Volume 21 (2018), pp. 713-726

[19] Ulam, S. M. A Collection of Mathematical Problems, Interscience Publ., New York-London, 1960

[20] Young, G. S. The linear functional equation, Amer. Math. Monthly, Volume 65 (1958), pp. 37-38

Cité par Sources :