Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \sum\limits _{i=1}^{n}\sum\limits _{j=1}^{m}f(p_{i} q_{j} ) =\sum\limits _{i=1}^{n}g(p_{i}) \sum\limits _{j=1}^{m}f(q_{j} )+\sum\limits _{i=1}^{n}f(p_{i}) \sum\limits _{j=1}^{m}q_{j}^{\beta } $ |
Singh, Dhiraj Kumar  1 ; Grover, Shveta  2
@article{JNSA_2021_14_3_a5, author = {Singh, Dhiraj Kumar and Grover, Shveta }, title = {On the stability of a sum form functional equation related to entropies of type (\(\alpha,\beta\))}, journal = {Journal of nonlinear sciences and its applications}, pages = {168-180}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, doi = {10.22436/jnsa.014.03.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.06/} }
TY - JOUR AU - Singh, Dhiraj Kumar AU - Grover, Shveta TI - On the stability of a sum form functional equation related to entropies of type (\(\alpha,\beta\)) JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 168 EP - 180 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.06/ DO - 10.22436/jnsa.014.03.06 LA - en ID - JNSA_2021_14_3_a5 ER -
%0 Journal Article %A Singh, Dhiraj Kumar %A Grover, Shveta %T On the stability of a sum form functional equation related to entropies of type (\(\alpha,\beta\)) %J Journal of nonlinear sciences and its applications %D 2021 %P 168-180 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.06/ %R 10.22436/jnsa.014.03.06 %G en %F JNSA_2021_14_3_a5
Singh, Dhiraj Kumar ; Grover, Shveta . On the stability of a sum form functional equation related to entropies of type (\(\alpha,\beta\)). Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 168-180. doi : 10.22436/jnsa.014.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.06/
[1] Lectures on functional equations and their applications, Academic Press, New York-London, 1966
[2] Information and entropy of countable measurable partitions. I, Kybernetika (Prague), Volume 10 (1974), pp. 491-503
[3] Über die Erweiterung der auf einer Punktmenge additiven Funktionen, Publ. Math. Debrecen, Volume 14 (1967), pp. 239-245
[4] Quantification method of classification processes. Concept of structural $\alpha$-entropy, Kybernetika (Prague), Volume 3 (1967), pp. 30-35
[5] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224
[6] An application of a differential equation in information theory, Glasnik Mat. Ser. III, Volume 14 (1979), pp. 269-274
[7] On a generalization of sum form functional equation. III, Demonstratio Math., Volume 13 (1980), pp. 749-754 | Zbl
[8] On the stability of a sum form functional equation of multiplicative type, Acta Acad. Paedagog. Agriensis Sect. Math. (N.S.), Volume 28 (2001), pp. 43-53
[9] The stability of a sum form functional equation arising in information theory, Acta Math. Hungar., Volume 79 (1998), pp. 39-48
[10] The general solution of a functional equation of information theory, Glasnik Mat. Ser. III, Volume 16 (1981), pp. 261-268
[11] On some functional equations of the information theory, Acta Math. Acad. Sci. Hungar., Volume 39 (1982), pp. 73-82
[12] On the stability of a sum form equation, Results Math., Volume 26 (1994), pp. 342-347
[13] On some functional equations and their applications, Publ. Inst. Math. (Beograd) (N.S.), Volume 20 (1976), pp. 191-201
[14] On a sum form functional equation related to entropies of type $(\alpha,\beta)$, Asian-Eur. J. Math., Volume 6 (2013), pp. 1-13
[15] On a sum form functional equation related to various nonadditive entropies in information theory, Tamsui Oxf. J. Inf. Math. Sci., Volume 30 (2014), pp. 23-43
[16] On an equation related to nonadditive entropies in information theory, Math. Appl. (Brno), Volume 6 (2017), pp. 31-41
[17] On the stability of a functional equation, Palestine J. Math., Volume 6 (2017), pp. 573-579
[18] On a functional equation related to some entropies in information theory, J. Discrete Math. Sci. Cryptogr., Volume 21 (2018), pp. 713-726
[19] A Collection of Mathematical Problems, Interscience Publ., New York-London, 1960
[20] The linear functional equation, Amer. Math. Monthly, Volume 65 (1958), pp. 37-38
Cité par Sources :