On some new scenario of $\Delta$-spaces
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 163-167.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The structure of the Cesáro spaces were investigated by various authors as cited in the text. The scenario of this manuscript is to bring out the spaces $\mathfrak{C}_{1}\left(\triangle^s_g\right)$ and $\mathfrak{C}_{\infty}\left[\triangle^s_g\right]$ of Cesáro type for $s\in \mathbb{N}=\{0,1,2,\ldots \}$. We will study some of their basic topological properties and obtain some inclusion relations concerning these spaces.
DOI : 10.22436/jnsa.014.03.05
Classification : 40A05, 46A45
Keywords: Cesáro sequence space, difference operator, \(BK\)-space

Fathema, Dowlath  1 ; Ganie, Abdul Hamid  2

1 Basic Science Department, College of Science and Theoretical Studies- Abha-F, Saudi Electronic University, KSA
2 Basic Science Department, College of Science and Theoretical Studies- Abha-M, Saudi Electronic University, KSA
@article{JNSA_2021_14_3_a4,
     author = {Fathema, Dowlath  and Ganie, Abdul Hamid },
     title = {On some new scenario of {\(\Delta\)-spaces}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {163-167},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     doi = {10.22436/jnsa.014.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.05/}
}
TY  - JOUR
AU  - Fathema, Dowlath 
AU  - Ganie, Abdul Hamid 
TI  - On some new scenario of \(\Delta\)-spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 163
EP  - 167
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.05/
DO  - 10.22436/jnsa.014.03.05
LA  - en
ID  - JNSA_2021_14_3_a4
ER  - 
%0 Journal Article
%A Fathema, Dowlath 
%A Ganie, Abdul Hamid 
%T On some new scenario of \(\Delta\)-spaces
%J Journal of nonlinear sciences and its applications
%D 2021
%P 163-167
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.05/
%R 10.22436/jnsa.014.03.05
%G en
%F JNSA_2021_14_3_a4
Fathema, Dowlath ; Ganie, Abdul Hamid . On some new scenario of \(\Delta\)-spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 163-167. doi : 10.22436/jnsa.014.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.05/

[1] Başarır, M. Paranormed Cesaro difference sequence space and related matrix transformations, Turk. J. Math., Volume 15 (1991), pp. 14-19

[2] Bektaş, Ç. A.; Et, M.; Çolak, R. Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., Volume 292 (2004), pp. 423-432 | DOI

[3] Bhardwaj, V. K.; Gupta, S. P.; Karan, R. Köthe-Toeplitz duals and matrix transformations of Cesaro difference sequence spaces of second order, J. Math. Anal., Volume 5 (2014), pp. 1-11

[4] Cooke, R. G. Infinite matrices and sequence spaces, Macmillan & Co., London, 1950

[5] Et, M. On some generalised Ces`aro difference sequence spaces, Istanb. Univ. Sci. Fac. J. Math. Phys. Astronom, Volume 55 (1997), pp. 221-229

[6] Freedman, A. R.; Sember, J. J.; Raphael, M. Some Cesàro‐Type Summability Spaces, Proc. London Math. Soc., Volume 37 (1978), pp. 508-520

[7] Ganie, A. H.; Ahmad, M.; Sheikh, N. A.; Jalal, T. New type of Riesz sequence space of non-absolute type, J. Appl. Computat. Math., Volume 5 (2016), pp. 1-4

[8] Ganie, A. H.; Aldawoud, A. Certain sequence spaces using Delta-operator, Adv. Stud. Contemp. Math., Volume 30 (2020), pp. 17-27

[9] Ganie, A. H.; Lone, S. A.; Akhter, A. Generalised difference sequence space of non- absolute type, EKSAKTA, Volume 1 (2020), pp. 147-153

[10] Ganie, A. H.; Sheikh, N. A. On some new sequence space of non-absolute type and matrix transformations, J. Egyptian Math. Soc., Volume 21 (2013), pp. 108-114 | DOI

[11] Ganie, A. H.; Sheikh, N. A. Generalized difference sequence spaces of Fuzzy numbers, New York J. Math., Volume 19 (2013), pp. 431-438

[12] Ganie, A. H.; Sheikh, N. A. Infinite matrices and almost convergence, Filomat, Volume 29 (2015), pp. 1183-1188 | DOI

[13] Ganie, A. H.; Gupkari, S. A.; Akhter, A. Invariant means of sequences with statistical behaviour, Int. J. Cre. Res. Thoug., Volume 8 (2020), pp. 2702-2705

[14] Jagers, A. A. A note on Cesaro sequence spaces, Nieuw Arch. Wisk.,, Volume 22 (1974), pp. 113-124

[15] Kizmaz, H. On certain sequences, Canad. Math. Bull., Volume 24 (1981), pp. 169-176 | DOI

[16] Mursaleen, M.; Ganie, A. H.; Sheikh, N. A. New type of generalized difference sequence space of non-absolute type and some matrix transformations, Filomat, Volume 28 (2014), pp. 1381-1392 | DOI

[17] Ng, P.-N.; Lee, P.-Y. Cesaro sequences spaces of non-absolute type, Comment Math. Prace Math., Volume 20 (1978), pp. 429-433

[18] Orhan, C. Cesaro difference sequence spaces related matrix transformations, Comm. Fac. Sci. Univ. Ankara Ser. A1 Math., Volume 32 (1983), pp. 55-63

[19] Sheikh, N. A.; Ganie, A. H. A new paranormed sequence space and some matrix transformations, Acta Math. Acad. Paedagog. Nyhazi., Volume 28 (2012), pp. 47-58

[20] Sheikh, N. A.; Ganie, A. H. A new type of sequence space of non-absolute type and matrix transformation, WSEAS Trans. J. Math., Volume 12 (2013), pp. 852-859

[21] Sheikh, N. A.; Jalal, T.; Ganie, A. H. New type of sequence spaces of non-absolute type and some matrix transformations, Acta Math. Acad. Paedagog. Nyhazi., Volume 29 (2013), pp. 51-66

[22] Shiue, J.-S. On the Cesaro sequence spaces, Tamkang J. Math, Volume 1 (1970), pp. 19-25

[23] Tripathy, B. C.; Esi, A. A new type of difference sequence spaces, Int. J. Sci. Technol., Volume 1 (2006), pp. 11-14

[24] Tripathy, B. C.; Esi, A.; Tripathy, B. K. On new types of generalized difference Cesaro sequence spaces, Soochow J. Math., Volume 31 (2005), pp. 333-340

Cité par Sources :