An SIR rumor pairwise model with spreading age
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 148-162.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we extend the classical rumor model with non-Markovian recovery process in a complex network. We follow the ideas from R\"{o}st to analyze the pairwise model; then, the hyperbolic system can be transformed into integro-differential equations. For the rumor model, the reproduction number is obtained. Next, we use numerical simulation to verify the accuracy of the result. In the end, we focus on how the three different distributions of recovery time with spreading age influence on rumor model. The result illustrates the significant effect of different distribution functions on the process of rumor spreading.
DOI : 10.22436/jnsa.014.03.04
Classification : 05C82, 37N25, 92D25
Keywords: Rumor pairwise model, spreading age, reproduction number, numerical simulation

Liu, Yao  1 ; Li, Jinxian  1

1 School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, P. R. China
@article{JNSA_2021_14_3_a3,
     author = {Liu, Yao  and Li, Jinxian },
     title = {An {SIR} rumor pairwise model with spreading age},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {148-162},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     doi = {10.22436/jnsa.014.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.04/}
}
TY  - JOUR
AU  - Liu, Yao 
AU  - Li, Jinxian 
TI  - An SIR rumor pairwise model with spreading age
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 148
EP  - 162
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.04/
DO  - 10.22436/jnsa.014.03.04
LA  - en
ID  - JNSA_2021_14_3_a3
ER  - 
%0 Journal Article
%A Liu, Yao 
%A Li, Jinxian 
%T An SIR rumor pairwise model with spreading age
%J Journal of nonlinear sciences and its applications
%D 2021
%P 148-162
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.04/
%R 10.22436/jnsa.014.03.04
%G en
%F JNSA_2021_14_3_a3
Liu, Yao ; Li, Jinxian . An SIR rumor pairwise model with spreading age. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 148-162. doi : 10.22436/jnsa.014.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.04/

[1] Chen, G. ILSCR rumor spreading model to discuss the control of rumor spreading in emergency, Phys. A, Volume 522 (2019), pp. 88-97 | DOI

[2] Chunlong, F.; Huimin, S.; Guohui, D. Research on an Improved SEIR Network Rumor Propagation Model, J. Intell., Volume 3 (2017), pp. 86-91

[3] Daley, D. J.; Kendall, D. G. Stochastic Rumors, J. Inst. Math. Appl., Volume 1 (1965), pp. 42-55 | DOI

[4] Hosni, A. I. E.; Li, K.; Ahmad, S. Analysis of the impact of online social networks addiction on the propagation of rumors, Phys. A, Volume 542 (2020), pp. 1-11 | DOI

[5] Huo, L.; Cheng, Y. Dynamical analysis of a IWSR rumor spreading model with considering the self-growth mechanism and indiscernible degree, Phys. A, Volume 536 (2019), pp. 1-11 | DOI

[6] Huo, L.; Ma, C. Dynamical analysis of rumor spreading model with impulse vaccination and time delay, Phys. A, Volume 471 (2017), pp. 653-665 | DOI

[7] Huo, L.; Wang, L.; Song, N.; Ma, Ch.; He, B. Rumor spreading model considering the activity of spreaders in the homogeneous network, Phys. A, Volume 468 (2017), pp. 855-865 | DOI

[8] Huo, L.; Wang, L.; Zhao, X. Stability analysis and optimal control of a rumor spreading model with media report, Phys. A, Volume 517 (2019), pp. 551-562 | DOI

[9] Jing, W.; Jin, Z.; Zhang, J. An SIR pairwise epidemic model with infection age and demography, J. Biol. Dyn., Volume 12 (2018), pp. 486-508 | DOI

[10] Kawachi, K. Deterministic models for rumor transmission, Nonlinear Anal. Real World Appl., Volume 9 (2008), pp. 1989-2028 | DOI

[11] Li, R.; Li, Y.; Meng, Z.; Song, Y.; Jiang, G. Rumor Spreading Model Considering Individual Activity and Refutation Mechanism Simultaneously, IEEE Access, Volume 8 (2020), pp. 63065-63067 | DOI

[12] Liu, Q.; Li, T.; Sun, M. The analysis of an SEIR rumor propagation model on heterogeneous network, Phys. A, Volume 469 (2017), pp. 372-380 | DOI

[13] Rost, G.; Vizi, Z.; Kiss, I. Z. Pairwise approximation for SIR type network epidemics with non-Markovian recovery, Proc. A, Volume 474 (2018), pp. 1-21 | DOI

[14] Sherborne, N.; Miller, J. C.; Blyuss, K. B.; Kiss, I. Z. Mean-field models for non-Markovian epidemics on networks, J. Math. Biol., Volume 76 (2018), pp. 755-778

[15] Volz, E. SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol., Volume 56 (2008), pp. 293-310

[16] Wilkinson, R. R.; Ball, F. G.; Sharkey, K. J. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models, J. Math. Biol., Volume 75 (2017), pp. 1563-1590

[17] Yang, J.; Chen, Y. Effect of infection age on an SIR epidemic model with demography on complex networks, Phys. A, Volume 479 (2017), pp. 527-541 | DOI

[18] Yao, H.; Gao, X. SE2IR Invest Market Rumor Spreading Model Considering Hesitating Mechansim, J. Syst. Sci. Inform., Volume 7 (2019), pp. 54-69 | DOI

[19] Yao, Y.; Xiao, X.; Zhang, C.; Dou, C.; Xia, S. Stability analysis of an SDILR model based on rumor recurrence on social media, Phys. A, Volume 535 (2019), pp. 1-13 | DOI

[20] Yang, J.; Xu, F. The Computational Approach for the Basic Reproduction Number of Epidemic Models on Complex Networks, IEEE Acess, Volume 7 (2019), pp. 26474-26479 | DOI

[21] Zhang, J.; Li, D.; Jing, W.; Jin, Z.; Zhu, H. Transmission dynamics of a two-strain pairwise model with infection age, Appl. Math. Model., Volume 71 (2019), pp. 656-672 | DOI

[22] Zhang, Y.; Zhu, J. Dynamic behavior of an I2S2R rumor propagation model on weighted contract networks, Phys. A,, Volume 536 (2019), pp. 1-20 | DOI

Cité par Sources :