Voir la notice de l'article provenant de la source International Scientific Research Publications
Satsanit, Wanchak 1
@article{JNSA_2021_14_3_a2, author = {Satsanit, Wanchak}, title = {On the solution linear and nonlinear fractional beam equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {139-147}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, doi = {10.22436/jnsa.014.03.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.03/} }
TY - JOUR AU - Satsanit, Wanchak TI - On the solution linear and nonlinear fractional beam equation JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 139 EP - 147 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.03/ DO - 10.22436/jnsa.014.03.03 LA - en ID - JNSA_2021_14_3_a2 ER -
%0 Journal Article %A Satsanit, Wanchak %T On the solution linear and nonlinear fractional beam equation %J Journal of nonlinear sciences and its applications %D 2021 %P 139-147 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.03/ %R 10.22436/jnsa.014.03.03 %G en %F JNSA_2021_14_3_a2
Satsanit, Wanchak. On the solution linear and nonlinear fractional beam equation. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 139-147. doi : 10.22436/jnsa.014.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.03/
[1] New ideas for proving convergence of decomposition method, Comput. Math. Appl., Volume 29 (1995), pp. 103-108 | DOI
[2] Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994 | DOI
[3] Sumudu transform fundamental properties investigation and applications, J. Appl. Math. Stoch. Anal., Volume 2006 (2006), pp. 1-23
[4] Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Pearson Education, NJ, 2013
[5] Variational iteration method -a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech., Volume 34 (1999), pp. 699-708
[6] Some applications of nonlinear fractional differential equations and their approximatios, Bull. Sci. Technol., Volume 15 (1999), pp. 86-90
[7] Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., Volume 178 (1999), pp. 257-262 | DOI
[8] A Laplace decomposition method algorithm applied to a class of nonlinear differential equations, J. Appl. Math., Volume 1 (2001), pp. 141-155
[9] Analytic approximation solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method, Appl. Math. Comput., Volume 165 (2005), pp. 459-472 | DOI
[10] Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., Volume 54 (2007), pp. 910-919 | DOI
[11] Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A, Volume 365 (2007), pp. 345-350 | DOI
[12] An application of Homotopy Perturbation Transform Method to Fractional Heat and Wave-Like Equations, J. Fract. Calc. Appl., Volume 4 (2013), pp. 290-302
[13] Analysis of a time fractional wave-like equation with the homotopy analysis method, Phys. Lett. A,, Volume 372 (2008), pp. 1250-1255 | DOI
Cité par Sources :