On the solution linear and nonlinear fractional beam equation
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 139-147.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we combined the fractional Laplace transform and Homotopy perturbation method (LHPM) and applied it to find an exact and approximation solution of different types of fractional beam equation. The fractional derivatives are considered in sense of Caputo. It was found that this method obtained the rapid convergence of the series solution. Four examples are illustrated to show the efficiency of this method.
DOI : 10.22436/jnsa.014.03.03
Classification : 46F10, 46F12
Keywords: Beam equation, homotopy perturbation method, fractional derivatives

Satsanit, Wanchak 1

1 Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
@article{JNSA_2021_14_3_a2,
     author = {Satsanit, Wanchak},
     title = {On the solution linear and nonlinear fractional beam equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {139-147},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     doi = {10.22436/jnsa.014.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.03/}
}
TY  - JOUR
AU  - Satsanit, Wanchak
TI  - On the solution linear and nonlinear fractional beam equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 139
EP  - 147
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.03/
DO  - 10.22436/jnsa.014.03.03
LA  - en
ID  - JNSA_2021_14_3_a2
ER  - 
%0 Journal Article
%A Satsanit, Wanchak
%T On the solution linear and nonlinear fractional beam equation
%J Journal of nonlinear sciences and its applications
%D 2021
%P 139-147
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.03/
%R 10.22436/jnsa.014.03.03
%G en
%F JNSA_2021_14_3_a2
Satsanit, Wanchak. On the solution linear and nonlinear fractional beam equation. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 139-147. doi : 10.22436/jnsa.014.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.03/

[1] Abbaoui, K.; Cherruault, Y. New ideas for proving convergence of decomposition method, Comput. Math. Appl., Volume 29 (1995), pp. 103-108 | DOI

[2] Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994 | DOI

[3] Belgacem, F. B. M.; Karaballi, A. Sumudu transform fundamental properties investigation and applications, J. Appl. Math. Stoch. Anal., Volume 2006 (2006), pp. 1-23

[4] Haberman, R. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Pearson Education, NJ, 2013

[5] He, J.-H. Variational iteration method -a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech., Volume 34 (1999), pp. 699-708

[6] He, J.-H. Some applications of nonlinear fractional differential equations and their approximatios, Bull. Sci. Technol., Volume 15 (1999), pp. 86-90

[7] He, J.-H. Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., Volume 178 (1999), pp. 257-262 | DOI

[8] Khuri, S. A. A Laplace decomposition method algorithm applied to a class of nonlinear differential equations, J. Appl. Math., Volume 1 (2001), pp. 141-155

[9] Momani, S. Analytic approximation solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method, Appl. Math. Comput., Volume 165 (2005), pp. 459-472 | DOI

[10] Momani, S.; Odibat, Z. Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., Volume 54 (2007), pp. 910-919 | DOI

[11] Momani, S.; Odibat, Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A, Volume 365 (2007), pp. 345-350 | DOI

[12] Singh, J.; Kumar, D. An application of Homotopy Perturbation Transform Method to Fractional Heat and Wave-Like Equations, J. Fract. Calc. Appl., Volume 4 (2013), pp. 290-302

[13] Xu, H.; Cang, J. Analysis of a time fractional wave-like equation with the homotopy analysis method, Phys. Lett. A,, Volume 372 (2008), pp. 1250-1255 | DOI

Cité par Sources :