Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 124-138.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This article contains a new discussion for Hilfer-Katugampola-type fractional derivative. We establish an existence and uniqueness results of Hilfer-Katugampola-type fractional derivative for implicit differential equations with the help of Schaefer's fixed point theorem and Banach contraction principle. Also, we use the Gronwall's lemma for singular kernels to prove the Ulam-Hyers-Rassias stability results. Further, the examples are given to illustrate our main results.
DOI : 10.22436/jnsa.014.03.02
Classification : 34A08, 26A33, 34B10, 34A12
Keywords: Hilfer-Katugampola-type fractional derivative, implicit differential equation, Schaefer's fixed point theorem, existence, uniqueness, Ulam stability

Salamooni, Ahmad Y. A.  1 ; Pawar, D. D.  1

1 School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, India
@article{JNSA_2021_14_3_a1,
     author = {Salamooni, Ahmad Y. A.  and Pawar, D. D. },
     title = {Existence and stability results for {Hilfer-Katugampola-type} fractional implicit differential equations with nonlocal conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {124-138},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     doi = {10.22436/jnsa.014.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.02/}
}
TY  - JOUR
AU  - Salamooni, Ahmad Y. A. 
AU  - Pawar, D. D. 
TI  - Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 124
EP  - 138
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.02/
DO  - 10.22436/jnsa.014.03.02
LA  - en
ID  - JNSA_2021_14_3_a1
ER  - 
%0 Journal Article
%A Salamooni, Ahmad Y. A. 
%A Pawar, D. D. 
%T Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions
%J Journal of nonlinear sciences and its applications
%D 2021
%P 124-138
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.02/
%R 10.22436/jnsa.014.03.02
%G en
%F JNSA_2021_14_3_a1
Salamooni, Ahmad Y. A. ; Pawar, D. D. . Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 124-138. doi : 10.22436/jnsa.014.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.02/

[1] Abbas, S.; Benchohra, M.; Lagreg, J. E.; Alsaedi, A.; Zhou, Y. Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Difference Equ., Volume 2017 (2017), pp. 1-14

[2] Abbas, S.; Benchohra, M.; N’Guerekata, G. M. Topics in fractional differential equations, Developments in Mathematics, Springer, New York, 2012 | DOI

[3] Almeida, R. Variational problems involving a Caputo-type fractional derivative, J. Optim. Theory Appl., Volume 174 (2017), pp. 276-294 | DOI

[4] Andras, Sz.; Kolumban, J. J. On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal. Theory Methods Appl., Volume 82 (2013), pp. 1-11 | DOI

[5] Baleanu, D.; Guvenc, Z. B.; (Eds.), J. A. Tenreiro Machado New trends in nanotechnology and fractional calculus applications, Springer, New York, 2010 | DOI

[6] Benchohra, M.; Lazreg, J. E. Nonlinear fractional implicit differential equations, Commun. Appl. Anal., Volume 17 (2013), pp. 471-482

[7] Benchohra, M.; Lazreg, J. E. On stability for nonlinear fractional implicit differential equations, Matematiche (Catania), Volume 70 (2015), pp. 49-61

[8] Benchohra, M.; Lazreg, J. E. Existence and Ulam stability for nonlinear fractional implicit differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., Volume 62 (2017), pp. 27-38

[9] Bhairat, S. P. Existence and stability of fractional differential equations involving generalized Katugampola derivative, Stud. Univ. Babes-Bolyai. Math., Volume 65 (2020), pp. 29-46

[10] Bhairat, S. P. On stability of generalized Cauchy-type problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 27 (2020), pp. 235-244

[11] Caponetto, R.; Dongola, G.; Fortuna, L.; Petras, I. Fractional order systems: modeling and control applications, World scientific publishing Co., , 2010

[12] Carpinteri, A.; Mainardi, F. Fractals and fractional calculus in continuum mechanics, Springer-Verlag, Vienna, 1997 | DOI

[13] Das, S. Functional fractional calculus, Springer, Berlin, 2011 | DOI

[14] Granas, A.; Dugundji, J. Fixed Point Theory, Springer, New York, 2003 | DOI

[15] Hilfer, R. Applications of Fractional Calculus in Physics, World Scientific Publishing Co., River Edge, 2000 | DOI

[16] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224 | DOI

[17] Ibrahim, R. W. Generalized UlamHyers stability for fractional differential equations, Internat. J. Math., Volume 23 (2012), pp. 1-9 | DOI

[18] Ibrahim, R. W.; Harikrishnan, S.; Kanagarajan, K. Existence and stability of Langevin equations with two Hilfer-Katugampola fractional derivatives, Stud. Univ. Babes-Bolyai Math., Volume 63 (2018), pp. 291-302

[19] Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., Volume 17 (2004), pp. 1135-1140 | DOI

[20] Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order II, Appl. Math. Lett., Volume 19 (2006), pp. 854-858 | DOI

[21] Jung, S.-M. Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011 | DOI

[22] Katugampola, U. N. New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | DOI

[23] Katugampola, U. N. A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15

[24] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006

[25] Mainardi, F. Fractional calculus and waves in linear viscoelasticity, An introduction to mathematical models, Imperial College Press, London, 2010

[26] Muniyappan, P.; Rajan, S. Hyers-Ulam-Rassias stability of fractional differential equation, Int. J. Pure Appl. Math., Volume 102 (2015), pp. 631-642

[27] Oliveira, D. S.; Oliveira, E. C. de Hilfer-Katugampola fractional derivative, Comput. Appl. Math., Volume 37 (2018), pp. 3672-3690 | DOI

[28] Podlubny, I. Fractional differential equations, Academic Press, San Diego, 1999

[29] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc, Volume 72 (1978), pp. 297-300 | DOI

[30] Rassias, Th. M.; Brzdek, J. Functional equations in mathematical analysis, Springer, New York, 2012 | DOI

[31] Rus, I. A. Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., Volume 26 (2010), pp. 103-107

[32] Sabatier, J.; Agrawal, O. P.; (Eds.), J. A. Tenreiro Machado Advances in fractional calculus, Springer, Dordrecht, 2007 | DOI

[33] Salamooni, A. Y. A.; Pawar, D. D. Unique positive solution for nonlinear Caputo-type fractional q-difference equations with nonlocal and Stieltjes integral boundary conditions, Fract. Differ. Calc., Volume 9 (2019), pp. 295-307

[34] Salamooni, A. Y. A.; Pawar, D. D. Existence and continuation of solutions of HilferKatugampola-type fractional differential equations, arXiv, Volume 2020 (2020), pp. 1-19

[35] Ulam, S. M. A collection of mathematical problems, Interscience Publishers, New York, 1960

[36] Ulam, S. M. Problems in modern mathematics, John Wiley & Sons, New York, 1964

[37] Vivek, D.; Kanagarajan, K.; Elsayed, E. M. Some existence and stability results for hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., Volume 15 (2018), pp. 1-21 | DOI

[38] Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., Volume 2011 (2011), pp. 1-10 | DOI

[39] Wang, J.; Lv, L.; Zhou, Y. New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 2530-2538 | DOI

Cité par Sources :