Voir la notice de l'article provenant de la source International Scientific Research Publications
Salamooni, Ahmad Y. A.  1 ; Pawar, D. D.  1
@article{JNSA_2021_14_3_a1, author = {Salamooni, Ahmad Y. A. and Pawar, D. D. }, title = {Existence and stability results for {Hilfer-Katugampola-type} fractional implicit differential equations with nonlocal conditions}, journal = {Journal of nonlinear sciences and its applications}, pages = {124-138}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, doi = {10.22436/jnsa.014.03.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.02/} }
TY - JOUR AU - Salamooni, Ahmad Y. A. AU - Pawar, D. D. TI - Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 124 EP - 138 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.02/ DO - 10.22436/jnsa.014.03.02 LA - en ID - JNSA_2021_14_3_a1 ER -
%0 Journal Article %A Salamooni, Ahmad Y. A. %A Pawar, D. D. %T Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions %J Journal of nonlinear sciences and its applications %D 2021 %P 124-138 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.02/ %R 10.22436/jnsa.014.03.02 %G en %F JNSA_2021_14_3_a1
Salamooni, Ahmad Y. A. ; Pawar, D. D. . Existence and stability results for Hilfer-Katugampola-type fractional implicit differential equations with nonlocal conditions. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 124-138. doi : 10.22436/jnsa.014.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.02/
[1] Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Difference Equ., Volume 2017 (2017), pp. 1-14
[2] Topics in fractional differential equations, Developments in Mathematics, Springer, New York, 2012 | DOI
[3] Variational problems involving a Caputo-type fractional derivative, J. Optim. Theory Appl., Volume 174 (2017), pp. 276-294 | DOI
[4] On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal. Theory Methods Appl., Volume 82 (2013), pp. 1-11 | DOI
[5] New trends in nanotechnology and fractional calculus applications, Springer, New York, 2010 | DOI
[6] Nonlinear fractional implicit differential equations, Commun. Appl. Anal., Volume 17 (2013), pp. 471-482
[7] On stability for nonlinear fractional implicit differential equations, Matematiche (Catania), Volume 70 (2015), pp. 49-61
[8] Existence and Ulam stability for nonlinear fractional implicit differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., Volume 62 (2017), pp. 27-38
[9] Existence and stability of fractional differential equations involving generalized Katugampola derivative, Stud. Univ. Babes-Bolyai. Math., Volume 65 (2020), pp. 29-46
[10] On stability of generalized Cauchy-type problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 27 (2020), pp. 235-244
[11] Fractional order systems: modeling and control applications, World scientific publishing Co., , 2010
[12] Fractals and fractional calculus in continuum mechanics, Springer-Verlag, Vienna, 1997 | DOI
[13] Functional fractional calculus, Springer, Berlin, 2011 | DOI
[14] Fixed Point Theory, Springer, New York, 2003 | DOI
[15] Applications of Fractional Calculus in Physics, World Scientific Publishing Co., River Edge, 2000 | DOI
[16] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224 | DOI
[17] Generalized UlamHyers stability for fractional differential equations, Internat. J. Math., Volume 23 (2012), pp. 1-9 | DOI
[18] Existence and stability of Langevin equations with two Hilfer-Katugampola fractional derivatives, Stud. Univ. Babes-Bolyai Math., Volume 63 (2018), pp. 291-302
[19] Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., Volume 17 (2004), pp. 1135-1140 | DOI
[20] Hyers-Ulam stability of linear differential equations of first order II, Appl. Math. Lett., Volume 19 (2006), pp. 854-858 | DOI
[21] Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011 | DOI
[22] New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | DOI
[23] A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15
[24] Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006
[25] Fractional calculus and waves in linear viscoelasticity, An introduction to mathematical models, Imperial College Press, London, 2010
[26] Hyers-Ulam-Rassias stability of fractional differential equation, Int. J. Pure Appl. Math., Volume 102 (2015), pp. 631-642
[27] Hilfer-Katugampola fractional derivative, Comput. Appl. Math., Volume 37 (2018), pp. 3672-3690 | DOI
[28] Fractional differential equations, Academic Press, San Diego, 1999
[29] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc, Volume 72 (1978), pp. 297-300 | DOI
[30] Functional equations in mathematical analysis, Springer, New York, 2012 | DOI
[31] Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., Volume 26 (2010), pp. 103-107
[32] Advances in fractional calculus, Springer, Dordrecht, 2007 | DOI
[33] Unique positive solution for nonlinear Caputo-type fractional q-difference equations with nonlocal and Stieltjes integral boundary conditions, Fract. Differ. Calc., Volume 9 (2019), pp. 295-307
[34] Existence and continuation of solutions of HilferKatugampola-type fractional differential equations, arXiv, Volume 2020 (2020), pp. 1-19
[35] A collection of mathematical problems, Interscience Publishers, New York, 1960
[36] Problems in modern mathematics, John Wiley & Sons, New York, 1964
[37] Some existence and stability results for hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., Volume 15 (2018), pp. 1-21 | DOI
[38] Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., Volume 2011 (2011), pp. 1-10 | DOI
[39] New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 2530-2538 | DOI
Cité par Sources :