Voir la notice de l'article provenant de la source International Scientific Research Publications
O'Regan, Donal 1
@article{JNSA_2021_14_3_a0, author = {O'Regan, Donal}, title = {A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps}, journal = {Journal of nonlinear sciences and its applications}, pages = {118-123}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, doi = {10.22436/jnsa.014.03.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.01/} }
TY - JOUR AU - O'Regan, Donal TI - A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 118 EP - 123 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.01/ DO - 10.22436/jnsa.014.03.01 LA - en ID - JNSA_2021_14_3_a0 ER -
%0 Journal Article %A O'Regan, Donal %T A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps %J Journal of nonlinear sciences and its applications %D 2021 %P 118-123 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.01/ %R 10.22436/jnsa.014.03.01 %G en %F JNSA_2021_14_3_a0
O'Regan, Donal. A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 118-123. doi : 10.22436/jnsa.014.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.01/
[1] A selection theorem and its applications, Bulletin Australian Math. Soc., Volume 46 (1992), pp. 205-212
[2] General Topology, PWN-Polish Scientific Publishers, Warszawa, 1989 | Zbl
[3] A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Pol. Math., Volume 47 (1987), pp. 331-346 | DOI | Zbl
[4] Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht, 1999 | Zbl
[5] Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris Ser. A-B, Volume 282 (1976), pp. 983-985 | Zbl
[6] Fixed Point Theory, Springer-Verlag, New York, 2003 | Zbl | DOI
[7] Remarks on fixed points, maximal elements and equilibria of generalized games, J. Math. Anal. Appl., Volume 233 (1999), pp. 581-596
[8] Fixed point theory on extension type spaces on topological spaces, Fixed Point Theory and Applications, Volume 1 (2004), pp. 13-20
[9] Coincidence continuation theory for multivalued maps with selections in a given class, Axioms, Volume 9 (2020), pp. 1-11
Cité par Sources :