A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 118-123.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We establish a topological transversality theorem and a Leray-Schauder alternative for coincidences between multi-valued maps with continuous selections and compact admissible maps.
DOI : 10.22436/jnsa.014.03.01
Classification : 47H10, 54C60, 54H25, 55M20
Keywords: Continuous selections, admissible maps, essential maps, coincidence theory, Continuous selections, admissible maps, essential maps, coincidence theory

O'Regan, Donal 1

1 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
@article{JNSA_2021_14_3_a0,
     author = {O'Regan, Donal},
     title = {A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {118-123},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     doi = {10.22436/jnsa.014.03.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.01/}
}
TY  - JOUR
AU  - O'Regan, Donal
TI  - A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 118
EP  - 123
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.01/
DO  - 10.22436/jnsa.014.03.01
LA  - en
ID  - JNSA_2021_14_3_a0
ER  - 
%0 Journal Article
%A O'Regan, Donal
%T A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps
%J Journal of nonlinear sciences and its applications
%D 2021
%P 118-123
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.01/
%R 10.22436/jnsa.014.03.01
%G en
%F JNSA_2021_14_3_a0
O'Regan, Donal. A coincidence continuation theory between multi-valued maps with continuous selections and compact admissible maps. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 3, p. 118-123. doi : 10.22436/jnsa.014.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.03.01/

[1] Ding, X. P.; Kim, W. K.; Tan, K. K. A selection theorem and its applications, Bulletin Australian Math. Soc., Volume 46 (1992), pp. 205-212

[2] Engelking, R. General Topology, PWN-Polish Scientific Publishers, Warszawa, 1989 | Zbl

[3] Furi, M.; Pera, P. A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Pol. Math., Volume 47 (1987), pp. 331-346 | DOI | Zbl

[4] Gorniewicz, L. Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht, 1999 | Zbl

[5] Granas, A. Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris Ser. A-B, Volume 282 (1976), pp. 983-985 | Zbl

[6] Granas, A.; Dugundji, J. Fixed Point Theory, Springer-Verlag, New York, 2003 | Zbl | DOI

[7] Lim, L. J.; Park, S.; Yu, Z. T. Remarks on fixed points, maximal elements and equilibria of generalized games, J. Math. Anal. Appl., Volume 233 (1999), pp. 581-596

[8] O'Regan, D. Fixed point theory on extension type spaces on topological spaces, Fixed Point Theory and Applications, Volume 1 (2004), pp. 13-20

[9] O'Regan, D. Coincidence continuation theory for multivalued maps with selections in a given class, Axioms, Volume 9 (2020), pp. 1-11

Cité par Sources :