Kuratowski measure of noncompactness and integro-differential equations in Banach spaces
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 109-117.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper focuses on the existence of mild solutions in Banach space for a first order semi-linear integro-differential equation. The results are achieved with the fixed-point theorem and Kuratowski measure of noncompactness. We conclude this study with an example to illustrate our findings.
DOI : 10.22436/jnsa.014.02.06
Classification : 34G20, 37L05, 47J35, 65J08
Keywords: Integro-differential equation, mild solution, fixed point, Kuratowski measure of noncompactness, resolvent operator

Traore, Mariam B  1 ; Diallo, Ouateni  1 ; Diop, Mamadou Abdoul  2

1 Des Techniques et des Technologies de Bamako, Ecole Doctorale des Sciences et Technologies du Mali, Universite des Sciences, B.P. E2528, Bamako, Mali
2 Departement de Mathematiques, Universite Gaston Berger de Saint-Louis, UFR SAT, B.P. 234, Saint-Louis, Senegal
@article{JNSA_2021_14_2_a5,
     author = {Traore, Mariam B  and Diallo, Ouateni  and Diop, Mamadou Abdoul },
     title = {Kuratowski measure of noncompactness and   integro-differential equations in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {109-117},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     doi = {10.22436/jnsa.014.02.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.06/}
}
TY  - JOUR
AU  - Traore, Mariam B 
AU  - Diallo, Ouateni 
AU  - Diop, Mamadou Abdoul 
TI  - Kuratowski measure of noncompactness and   integro-differential equations in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 109
EP  - 117
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.06/
DO  - 10.22436/jnsa.014.02.06
LA  - en
ID  - JNSA_2021_14_2_a5
ER  - 
%0 Journal Article
%A Traore, Mariam B 
%A Diallo, Ouateni 
%A Diop, Mamadou Abdoul 
%T Kuratowski measure of noncompactness and   integro-differential equations in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2021
%P 109-117
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.06/
%R 10.22436/jnsa.014.02.06
%G en
%F JNSA_2021_14_2_a5
Traore, Mariam B ; Diallo, Ouateni ; Diop, Mamadou Abdoul . Kuratowski measure of noncompactness and   integro-differential equations in Banach spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 109-117. doi : 10.22436/jnsa.014.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.06/

[1] Akhmerov, R. R.; Kamenskii, M. I.; Patapov, A. S.; Rodkhina, A. E.; Rodkina, A. S.; Sadovskii, B. N. Measures of noncompactness and condensing operators, Birkhäuser Verlag, Basel, 1992 | Zbl

[2] Balachandran, K.; Park, D. G.; Anthoni, S. M. Existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations, Comput. Math. Appl., Volume 46 (2003), pp. 1313-1324 | Zbl | DOI

[3] Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980

[4] Belleni-Morante, A. An Integrodifferential equation arising from the theory of heat conduction in rigid material with memory, Boll. Un. Mat. Ital., Volume 15 (1978), pp. 470-482

[5] Benchohra, M.; Rezzoug, N. Measure of noncompactness and second order evolution equations, Gulf J. Math., Volume 4 (2016), pp. 71-79 | Zbl

[6] Benchohra, M.; Rezoug, N.; Zhou, Y. Semilinear Mixed Type Integro-Differential Evolution Equations Via Kuratowski Measure of Noncompactness, Z. Anal. Anwend., Volume 38 (2019), pp. 143-156 | DOI | Zbl

[7] Alvarez, J. Carmona Measure of Noncompactness and fixed points of nonexpansive condensing mapping in locally convex spaces, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid, Volume 79 (1985), pp. 53-66

[8] Chen, P. Y.; Li, Y. X. Monotone Iterative Technique for a Class of Semilinear Evolution Equations with Nonlocal Conditions, Results Math., Volume 63 (2013), pp. 731-744 | DOI | Zbl

[9] Deimling, K. Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | DOI

[10] Engel, K.-J.; Nagel, R. One-parameter semigroups for linear evolution equations, Springer-Verlag, New York, 2000 | Zbl | DOI

[11] Ezzinbi, K.; Degla, G.; Ndambomve, P. Controllability for some Partial Functional Integrodifferential Equations with Nonlocal Conditions in Banach Spaces, Discuss. Math. Differ. Incl. Control Optim., Volume 35 (2015), pp. 25-46

[12] Grimmer, R. C. Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., Volume 273 (1982), pp. 333-349 | DOI | Zbl

[13] Guo, D.; Lakshmikantham, V.; Liu, X. Z. Nonlinear Integral Equation in Abstract Spaces, Kluwer Academic Publishers Group, Dordrecht, 1996 | Zbl

[14] Heinz, H. P. On the behaviour of measure of noncompactness with respect to differentiation on integration of rector-valued functions, Nonlinear Anal., Volume 7 (1983), pp. 1351-1371

[15] Henriquez, H. R.; Poblete, V.; Pozo, J. C. Mild solutions of non-autonomous second order problems with nonlocal initial conditions, J. Math. Anal. Appl., Volume 412 (2014), pp. 1064-1083 | Zbl | DOI

[16] Olszowy, L. Existence of mild solutions for semilinear nonlocal Cauchy problems in separable Banach spaces, Z. Anal. Anwend., Volume 32 (2013), pp. 215-232 | DOI | Zbl

[17] Olszowy, L.; Wedrychowicz, S. On the existence and asymptotic behaviour of solutions of an evolution equation and an application to the Feynman-Kac theorem, Nonlinear Anal., Volume 74 (2011), pp. 6758-6769 | Zbl | DOI

[18] Pachpatte, B. G. A note on Gronwall-Bellman inequality, J. Math. Anal. Appl., Volume 44 (1973), pp. 758-762 | Zbl | DOI

Cité par Sources :