Voir la notice de l'article provenant de la source International Scientific Research Publications
Traore, Mariam B  1 ; Diallo, Ouateni  1 ; Diop, Mamadou Abdoul  2
@article{JNSA_2021_14_2_a5, author = {Traore, Mariam B and Diallo, Ouateni and Diop, Mamadou Abdoul }, title = {Kuratowski measure of noncompactness and integro-differential equations in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {109-117}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2021}, doi = {10.22436/jnsa.014.02.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.06/} }
TY - JOUR AU - Traore, Mariam B AU - Diallo, Ouateni AU - Diop, Mamadou Abdoul TI - Kuratowski measure of noncompactness and integro-differential equations in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 109 EP - 117 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.06/ DO - 10.22436/jnsa.014.02.06 LA - en ID - JNSA_2021_14_2_a5 ER -
%0 Journal Article %A Traore, Mariam B %A Diallo, Ouateni %A Diop, Mamadou Abdoul %T Kuratowski measure of noncompactness and integro-differential equations in Banach spaces %J Journal of nonlinear sciences and its applications %D 2021 %P 109-117 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.06/ %R 10.22436/jnsa.014.02.06 %G en %F JNSA_2021_14_2_a5
Traore, Mariam B ; Diallo, Ouateni ; Diop, Mamadou Abdoul . Kuratowski measure of noncompactness and integro-differential equations in Banach spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 109-117. doi : 10.22436/jnsa.014.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.06/
[1] Measures of noncompactness and condensing operators, Birkhäuser Verlag, Basel, 1992 | Zbl
[2] Existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations, Comput. Math. Appl., Volume 46 (2003), pp. 1313-1324 | Zbl | DOI
[3] Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980
[4] An Integrodifferential equation arising from the theory of heat conduction in rigid material with memory, Boll. Un. Mat. Ital., Volume 15 (1978), pp. 470-482
[5] Measure of noncompactness and second order evolution equations, Gulf J. Math., Volume 4 (2016), pp. 71-79 | Zbl
[6] Semilinear Mixed Type Integro-Differential Evolution Equations Via Kuratowski Measure of Noncompactness, Z. Anal. Anwend., Volume 38 (2019), pp. 143-156 | DOI | Zbl
[7] Measure of Noncompactness and fixed points of nonexpansive condensing mapping in locally convex spaces, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid, Volume 79 (1985), pp. 53-66
[8] Monotone Iterative Technique for a Class of Semilinear Evolution Equations with Nonlocal Conditions, Results Math., Volume 63 (2013), pp. 731-744 | DOI | Zbl
[9] Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | DOI
[10] One-parameter semigroups for linear evolution equations, Springer-Verlag, New York, 2000 | Zbl | DOI
[11] Controllability for some Partial Functional Integrodifferential Equations with Nonlocal Conditions in Banach Spaces, Discuss. Math. Differ. Incl. Control Optim., Volume 35 (2015), pp. 25-46
[12] Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., Volume 273 (1982), pp. 333-349 | DOI | Zbl
[13] Nonlinear Integral Equation in Abstract Spaces, Kluwer Academic Publishers Group, Dordrecht, 1996 | Zbl
[14] On the behaviour of measure of noncompactness with respect to differentiation on integration of rector-valued functions, Nonlinear Anal., Volume 7 (1983), pp. 1351-1371
[15] Mild solutions of non-autonomous second order problems with nonlocal initial conditions, J. Math. Anal. Appl., Volume 412 (2014), pp. 1064-1083 | Zbl | DOI
[16] Existence of mild solutions for semilinear nonlocal Cauchy problems in separable Banach spaces, Z. Anal. Anwend., Volume 32 (2013), pp. 215-232 | DOI | Zbl
[17] On the existence and asymptotic behaviour of solutions of an evolution equation and an application to the Feynman-Kac theorem, Nonlinear Anal., Volume 74 (2011), pp. 6758-6769 | Zbl | DOI
[18] A note on Gronwall-Bellman inequality, J. Math. Anal. Appl., Volume 44 (1973), pp. 758-762 | Zbl | DOI
Cité par Sources :