Voir la notice de l'article provenant de la source International Scientific Research Publications
Ganie, Abdul Hamid  1
@article{JNSA_2021_14_2_a3, author = {Ganie, Abdul Hamid }, title = {Some new approach of spaces of non-integral order}, journal = {Journal of nonlinear sciences and its applications}, pages = {89-96}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2021}, doi = {10.22436/jnsa.014.02.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.04/} }
TY - JOUR AU - Ganie, Abdul Hamid TI - Some new approach of spaces of non-integral order JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 89 EP - 96 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.04/ DO - 10.22436/jnsa.014.02.04 LA - en ID - JNSA_2021_14_2_a3 ER -
%0 Journal Article %A Ganie, Abdul Hamid %T Some new approach of spaces of non-integral order %J Journal of nonlinear sciences and its applications %D 2021 %P 89-96 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.04/ %R 10.22436/jnsa.014.02.04 %G en %F JNSA_2021_14_2_a3
Ganie, Abdul Hamid . Some new approach of spaces of non-integral order. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 89-96. doi : 10.22436/jnsa.014.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.04/
[1] On the paranormed Riesz sequence space of nonabsolute type, Southeast Asian Bull. Math., Volume 26 (2002), pp. 701-715
[2] Some new sequence spaces which include the spaces $l_{p}$ and $l_{\infty}$, Demonstration Math., Volume 3 (2005), pp. 641-656
[3] On a fractional difference operator, Alex. Eng. J., Volume 55 (2016), pp. 1811-1816
[4] On the space of sequences of $p$-bounded variation and related matrix mappings, Ukrainian Math. J., Volume 55 (2003), pp. 136-147 | Zbl | DOI
[5] Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., Volume 292 (2004), pp. 423-432
[6] Functional Analysis with Application, John Wiley & Sons, New Delhi, 1989
[7] On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., Volume 26 (1997), pp. 483-492
[8] Leonhard Euler’s integral: A historical profile of the gamma function, The American Math. Monthly, Volume 66 (1959), pp. 849-869
[9] Euler-Riesz Difference Sequence Spaces, Turk. J. Math. Comput. Sci., Volume 7 (2017), pp. 63-72
[10] New type of difference sequence space of Fibonacci numbers, SciFed Comp. Sci. Appl., Volume 1 (2018), pp. 1-7
[11] New type of Riesz sequence space of non-absolute type, J. Appl. Comput. Math., Volume 5 (2016), pp. 1-4
[12] Some new type of difference sequence space of non-absolute type, Int. J. Modern Math. Sci., Volume 14 (2016), pp. 116-122
[13] Matrix transformation into a new sequence space related to invariant means, Chamchuri J. Math., Volume 4 (2012), pp. 71-72
[14] On some new sequence space of non-absolute type and matrix transformations, J. Egypt. Math. Soc., Volume 21 (2013), pp. 34-40
[15] Infinite matrices and almost convergence, Filomat, Volume 29 (2015), pp. 1183-1188 | DOI | Zbl
[16] A new sequence space and matrix transformations, Thai J. Math., Volume 2 (2010), pp. 373-381
[17] A new type of difference sequence spaces, Thai J. Math., Volume 10 (2012), pp. 147-155
[18] Infinite matrices and $\sigma$-convergent sequences, Southeast Asian Bull. Math., Volume 36 (2012), pp. 825-830 | Zbl
[19] On certain Euler difference sequence spaces of fractional order and related dual properties, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 997-1004
[20] On certain sequences spaces, Canad. Math. Bull., Volume 24 (1981), pp. 169-176
[21] Linear Raume mit unendlichvielen koordinaten and Ringe unenlicher Matrizen, J. Reine Angew. Math., Volume 171 (1934), pp. 193-226
[22] Elements of Functional Analysis, The University Press, Cambridge, 1988
[23] Matrix transformations between sequence spaces of generalized weighted means, Applied Math. Comput., Volume 147 (2004), pp. 333-345
[24] New type of difference sequenence spaces and matrix transformation, Filomat, Volume 28 (2014), pp. 1381-1392 | DOI
[25] Cesaro sequences spaces of non-absolute type, Comment Math. Prace Math., Volume 20 (1978), pp. 429-433
[26] Matrix transformations of some generalized sequence spaces, J. Orissa Math. Soc., Volume 4 (1985), pp. 37-51
[27] Matrix transformations between some new sequence spaces, Tamkang J. Math., Volume 19 (1988), pp. 75-80
[28] A new paranormed sequence space and some matrix transformation, Acta Math. Acad. Paed. Nyir., Volume 28 (2012), pp. 47-58
[29] A new type of sequence space of non-absolute type and matrix transformation, WSEAS Trans. J. Math., Volume 8 (2013), pp. 852-859
[30] On the space of $\lambda$-convergent sequence and almost convergence, Thai J. Math., Volume 2 (2013), pp. 393-398
[31] New type of sequence spaces of non-absolute type and some matrix transformations, Acta Math. Acade. Paedag. Nyireg., Volume 29 (2013), pp. 51-66
[32] Matrixtransformationen von folgenräumen eine ergebnisübersicht, Math. Z., Volume 154 (1977), pp. 1-16
[33] On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math., Volume 31 (2005), pp. 333-340
[34] Characterization of some matrix classes involving paranormed sequence spaces, Tamkang J. Math., Volume 37 (2006), pp. 155-162
Cité par Sources :