Some new approach of spaces of non-integral order
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 89-96.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this work is to develop the new techniques of sequences by employing the gamma function by introducing the space $r^{q}( \triangle^{p}_{g},\kappa)$ of non-integral order. The completeness property concerning to this non-integral order space will be developed. Many interesting properties will be illustrated.
DOI : 10.22436/jnsa.014.02.04
Classification : 46A45, 46A35, 46B15
Keywords: Sequence space, non-absolute property, basis

Ganie, Abdul Hamid  1

1 Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University-Abha Male, Kingdom of Saudi Arabia
@article{JNSA_2021_14_2_a3,
     author = {Ganie, Abdul Hamid },
     title = {Some new approach of spaces of non-integral order},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {89-96},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     doi = {10.22436/jnsa.014.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.04/}
}
TY  - JOUR
AU  - Ganie, Abdul Hamid 
TI  - Some new approach of spaces of non-integral order
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 89
EP  - 96
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.04/
DO  - 10.22436/jnsa.014.02.04
LA  - en
ID  - JNSA_2021_14_2_a3
ER  - 
%0 Journal Article
%A Ganie, Abdul Hamid 
%T Some new approach of spaces of non-integral order
%J Journal of nonlinear sciences and its applications
%D 2021
%P 89-96
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.04/
%R 10.22436/jnsa.014.02.04
%G en
%F JNSA_2021_14_2_a3
Ganie, Abdul Hamid . Some new approach of spaces of non-integral order. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 89-96. doi : 10.22436/jnsa.014.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.04/

[1] Altay, B.; Basar, F. On the paranormed Riesz sequence space of nonabsolute type, Southeast Asian Bull. Math., Volume 26 (2002), pp. 701-715

[2] Aydin, C.; Başar, F. Some new sequence spaces which include the spaces $l_{p}$ and $l_{\infty}$, Demonstration Math., Volume 3 (2005), pp. 641-656

[3] Baliarsingh, P. On a fractional difference operator, Alex. Eng. J., Volume 55 (2016), pp. 1811-1816

[4] Başar, F.; Altay, B. On the space of sequences of $p$-bounded variation and related matrix mappings, Ukrainian Math. J., Volume 55 (2003), pp. 136-147 | Zbl | DOI

[5] Bektaş, C.; Et, M.; Çolak, R. Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., Volume 292 (2004), pp. 423-432

[6] Choudhary, B.; Nanda, S. Functional Analysis with Application, John Wiley & Sons, New Delhi, 1989

[7] Çolak, R.; Et, M. On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., Volume 26 (1997), pp. 483-492

[8] Davis, P. J. Leonhard Euler’s integral: A historical profile of the gamma function, The American Math. Monthly, Volume 66 (1959), pp. 849-869

[9] Ellidokuzoglu, H. B.; Demiriz, S. Euler-Riesz Difference Sequence Spaces, Turk. J. Math. Comput. Sci., Volume 7 (2017), pp. 63-72

[10] Ganie, A. H.; Akhter, A. New type of difference sequence space of Fibonacci numbers, SciFed Comp. Sci. Appl., Volume 1 (2018), pp. 1-7

[11] Ganie, A. H.; Mobin, A.; Sheikh, N. A.; Jalal, T. New type of Riesz sequence space of non-absolute type, J. Appl. Comput. Math., Volume 5 (2016), pp. 1-4

[12] Ganie, A. H.; Mobin, A.; Sheikh, N. A.; Jalal, T.; Gupkari, S. A. Some new type of difference sequence space of non-absolute type, Int. J. Modern Math. Sci., Volume 14 (2016), pp. 116-122

[13] Ganie, A. H.; Sheikh, N. A. Matrix transformation into a new sequence space related to invariant means, Chamchuri J. Math., Volume 4 (2012), pp. 71-72

[14] Ganie, A. H.; Sheikh, N. A. On some new sequence space of non-absolute type and matrix transformations, J. Egypt. Math. Soc., Volume 21 (2013), pp. 34-40

[15] Ganie, A. H.; Sheikh, N. A. Infinite matrices and almost convergence, Filomat, Volume 29 (2015), pp. 1183-1188 | DOI | Zbl

[16] Jalal, T.; Ahmad, Z. U. A new sequence space and matrix transformations, Thai J. Math., Volume 2 (2010), pp. 373-381

[17] Jalal, T.; Ahmad, R. A new type of difference sequence spaces, Thai J. Math., Volume 10 (2012), pp. 147-155

[18] Jalal, T.; Gupkari, S. A.; Ganie, A. H. Infinite matrices and $\sigma$-convergent sequences, Southeast Asian Bull. Math., Volume 36 (2012), pp. 825-830 | Zbl

[19] Kadak, U.; Baliarsingh, P. On certain Euler difference sequence spaces of fractional order and related dual properties, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 997-1004

[20] Kizmaz, H. On certain sequences spaces, Canad. Math. Bull., Volume 24 (1981), pp. 169-176

[21] Kothe, G.; Toeplitz, O. Linear Raume mit unendlichvielen koordinaten and Ringe unenlicher Matrizen, J. Reine Angew. Math., Volume 171 (1934), pp. 193-226

[22] Maddox, I. J. Elements of Functional Analysis, The University Press, Cambridge, 1988

[23] Malkowsky, E.; Savas, E. Matrix transformations between sequence spaces of generalized weighted means, Applied Math. Comput., Volume 147 (2004), pp. 333-345

[24] Mursaleen, M.; Ganie, A. H.; Sheikh, N. A. New type of difference sequenence spaces and matrix transformation, Filomat, Volume 28 (2014), pp. 1381-1392 | DOI

[25] Ng, P.-N.; Lee, P.-Y. Cesaro sequences spaces of non-absolute type, Comment Math. Prace Math., Volume 20 (1978), pp. 429-433

[26] Savaş, E. Matrix transformations of some generalized sequence spaces, J. Orissa Math. Soc., Volume 4 (1985), pp. 37-51

[27] Savaş, E. Matrix transformations between some new sequence spaces, Tamkang J. Math., Volume 19 (1988), pp. 75-80

[28] Sheikh, N. A.; Ganie, A. H. A new paranormed sequence space and some matrix transformation, Acta Math. Acad. Paed. Nyir., Volume 28 (2012), pp. 47-58

[29] Sheikh, N. A.; Ganie, A. H. A new type of sequence space of non-absolute type and matrix transformation, WSEAS Trans. J. Math., Volume 8 (2013), pp. 852-859

[30] Sheikh, N. A.; Ganie, A. H. On the space of $\lambda$-convergent sequence and almost convergence, Thai J. Math., Volume 2 (2013), pp. 393-398

[31] Sheikh, N. A.; Jalal, T.; Ganie, A. H. New type of sequence spaces of non-absolute type and some matrix transformations, Acta Math. Acade. Paedag. Nyireg., Volume 29 (2013), pp. 51-66

[32] Stieglitz, M.; Tietz, H. Matrixtransformationen von folgenräumen eine ergebnisübersicht, Math. Z., Volume 154 (1977), pp. 1-16

[33] Tripathy, B. C.; Esi, A.; Tripathy, B. On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math., Volume 31 (2005), pp. 333-340

[34] Tripathy, B. C.; Sen, M. Characterization of some matrix classes involving paranormed sequence spaces, Tamkang J. Math., Volume 37 (2006), pp. 155-162

Cité par Sources :