Voir la notice de l'article provenant de la source International Scientific Research Publications
Ganon, Ardjouma  1 ; Taha, Manin Mathurin  1 ; Koffi, N'guessan  2 ; Toure, Augustin Kidjegbo  2
@article{JNSA_2021_14_2_a2, author = {Ganon, Ardjouma and Taha, Manin Mathurin and Koffi, N'guessan and Toure, Augustin Kidjegbo }, title = {Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions}, journal = {Journal of nonlinear sciences and its applications}, pages = {80-88}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2021}, doi = {10.22436/jnsa.014.02.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.03/} }
TY - JOUR AU - Ganon, Ardjouma AU - Taha, Manin Mathurin AU - Koffi, N'guessan AU - Toure, Augustin Kidjegbo TI - Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 80 EP - 88 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.03/ DO - 10.22436/jnsa.014.02.03 LA - en ID - JNSA_2021_14_2_a2 ER -
%0 Journal Article %A Ganon, Ardjouma %A Taha, Manin Mathurin %A Koffi, N'guessan %A Toure, Augustin Kidjegbo %T Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions %J Journal of nonlinear sciences and its applications %D 2021 %P 80-88 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.03/ %R 10.22436/jnsa.014.02.03 %G en %F JNSA_2021_14_2_a2
Ganon, Ardjouma ; Taha, Manin Mathurin ; Koffi, N'guessan ; Toure, Augustin Kidjegbo . Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 80-88. doi : 10.22436/jnsa.014.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.03/
[1] On the numerical quenching time at blow-up, Adv. Math. Sci. J., Volume 8 (2019), pp. 71-85 | Zbl
[2] Remarks on blow-up behavior for a nonlinear diffusion equation with neumann boundary conditions, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 167-172 | Zbl | DOI
[3] Numerical quenching for heat equations with coupled nonlinearboundary flux, Int. J. Anal. Appl., Volume 17 (2019), pp. 1034-1051
[4] Numerical Blow-up for the Porous Medium Equation with a Source, Numer. Methods Partial Differential Equations, Volume 20 (2004), pp. 552-575 | Zbl | DOI
[5] The Balance bet we en Nonlinear Inwards and Outwards Boundary Flux for a Nonlinear Heat Equation, J. Differential Equations, Volume 184 (2002), pp. 259-282
[6] Diffusivity versus Absorption through the Boundary, J. Differential Equations, Volume 99 (1992), pp. 281-305 | DOI | Zbl
[7] Blow-up for Semidiscretization of Semilinear Parabolic Equation With Nonlinear Boundary Condition, J. Math. Res., Volume 11 (2019), pp. 1-10
[8] Numerical blow-up on whole domain for a quasilinear parabolic equation with nonlinear boundary condition, Adv. Math. Sci. J., Volume 9 (2020), pp. 49-58
[9] Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations--An application to the blow-up problems of partial differential equations, J. Comput. Appl. Math., Volume 193 (2006), pp. 614-637 | DOI | Zbl
[10] Blow-Up Analysis for a Nonlinear Diffusion Equation with Nonlinear Boundary Conditions, Appl. Math. Lett., Volume 17 (2004), pp. 193-199 | DOI | Zbl
[11] Numerical blow-up time for a parabolic equation with nonlinear boundary conditions, Int. J. Numer. Methods Appl., Volume 17 (2018), pp. 141-160
[12] On the Approximation of Blow-up Time for Solutions of Nonlinear Parabolic Equations, Publ. Res. Inst. Math. Sci., Volume 36 (2000), pp. 613-640 | DOI | Zbl
Cité par Sources :