Voir la notice de l'article provenant de la source International Scientific Research Publications
Jantakarn, Kittisak  1 ; Kaewcharoen, Anchalee  1
@article{JNSA_2021_14_2_a1, author = {Jantakarn, Kittisak and Kaewcharoen, Anchalee }, title = {Strong convergence theorems for mixed equilibrium problems and {Bregman} relatively nonexpansive mappings in reflexive {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {63-79}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2021}, doi = {10.22436/jnsa.014.02.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.02/} }
TY - JOUR AU - Jantakarn, Kittisak AU - Kaewcharoen, Anchalee TI - Strong convergence theorems for mixed equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 63 EP - 79 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.02/ DO - 10.22436/jnsa.014.02.02 LA - en ID - JNSA_2021_14_2_a1 ER -
%0 Journal Article %A Jantakarn, Kittisak %A Kaewcharoen, Anchalee %T Strong convergence theorems for mixed equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces %J Journal of nonlinear sciences and its applications %D 2021 %P 63-79 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.02/ %R 10.22436/jnsa.014.02.02 %G en %F JNSA_2021_14_2_a1
Jantakarn, Kittisak ; Kaewcharoen, Anchalee . Strong convergence theorems for mixed equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 63-79. doi : 10.22436/jnsa.014.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.02/
[1] Strong convergence theorems for equilibrium problems and weak Bregman relatively nonexpansive mappings in Banach spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-16 | DOI | Zbl
[2] Metric and generalized projection operators in Banach spaces: Properties and applications, In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Volume 1996 (1996), pp. 15-50 | Zbl
[3] Bregman monotone optimization algorithms, SIAM J. Control Optim., Volume 42 (2003), pp. 596-636
[4] Essential Smoothness, Essential Strict Convexity, and Legendre functions in Banach Spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI
[5] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145 | Zbl
[6] The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., Volume 7 (1967), pp. 200-217 | DOI
[7] Nonexpansive projections and resolvents of accretive operators in Banch spaces, Houston J. Math., Volume 3 (1977), pp. 459-470
[8] Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publ., Dordrecht, 2000 | Zbl
[9] On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal., Volume 10 (2003), pp. 35-61
[10] Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., Volume 7 (2001), pp. 151-174 | DOI | Zbl
[11] Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl | DOI
[12] A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., Volume 214 (2008), pp. 186-201 | Zbl | DOI
[13] Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces, Int. J. Math. Math. Sci., Volume 2011 (2011), pp. 1-23 | Zbl | DOI
[14] Composite iterative schemes for maximal monotone operators in reflexive Banach spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10 | Zbl | DOI
[15] Convergence of iterative schemes for solving fixed point of multi-valued nonself mappings and equilibrium problems, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1245-1256 | Zbl | DOI
[16] Iterative methods for solving equilibrium problems, variational inequalities and fixed points of nonexpansive semigroups, J. Global Optim., Volume 57 (2013), pp. 1277-1297 | Zbl | DOI
[17] A new algorithm for mixed equilibrium problem and Bregman strongly nonexpansive mapping in Banach spaces, arXiv, Volume 2015 (2015), pp. 1-20
[18] Generalized equilibrium and fixed point problems for Bregman relatively nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-21 | DOI | Zbl
[19] Convex Functions, Monotone Operators, and Differentiability, Springer-Verlag, Berlin, 1993 | DOI | Zbl
[20] A weak convergence theorem for the alternating method with Bregman distances, In: Theory and Applications of Nonlinear Operators, Volume 1996 (1996), pp. 313-318
[21] A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 471-485 | Zbl
[22] Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI
[23] A projection method for solving nonlinear problems in reflexive Banach spaces, J. Fixed Point Theory Appl., Volume 9 (2011), pp. 101-116 | Zbl | DOI
[24] Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-point algorithms for inverse problems in science and engineering, Volume 2011 (2011), pp. 301-316 | Zbl | DOI
[25] Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces, SIAM J. Optim., Volume 21 (2011), pp. 1289-1308 | Zbl | DOI
[26] Convergence theorem for common fixed points of a finite family of multi-valued Bregman relatively nonexpansive mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14 | Zbl | DOI
[27] Halpern's iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl., Volume 64 (2012), pp. 489-499 | DOI | Zbl
[28] Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl., Volume 231 (2014), pp. 1-16 | DOI | Zbl
[29] Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River Edge, 2002 | Zbl
Cité par Sources :