Strong convergence theorems for mixed equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 63-79.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we propose a new iterative method for solving the mixed equilibrium problems and the fixed point problems for a countable family of Bregman relatively nonexpansive mappings in reflexive Banach spaces. We prove that the sequence generated by the proposed iterative algorithm converges strongly to a common solution of the mentioned problems. Further, a numerical example of the iterative algorithm supporting our main result is presented.
DOI : 10.22436/jnsa.014.02.02
Classification : 47H10, 54H25
Keywords: Mixed equilibrium problems, Bregman relatively nonexpansive mappings, reflexive Banach spaces

Jantakarn, Kittisak  1 ; Kaewcharoen, Anchalee  1

1 Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
@article{JNSA_2021_14_2_a1,
     author = {Jantakarn, Kittisak  and Kaewcharoen, Anchalee },
     title = {Strong convergence theorems for mixed 	equilibrium problems and {Bregman} relatively nonexpansive mappings in reflexive {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {63-79},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     doi = {10.22436/jnsa.014.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.02/}
}
TY  - JOUR
AU  - Jantakarn, Kittisak 
AU  - Kaewcharoen, Anchalee 
TI  - Strong convergence theorems for mixed 	equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 63
EP  - 79
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.02/
DO  - 10.22436/jnsa.014.02.02
LA  - en
ID  - JNSA_2021_14_2_a1
ER  - 
%0 Journal Article
%A Jantakarn, Kittisak 
%A Kaewcharoen, Anchalee 
%T Strong convergence theorems for mixed 	equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2021
%P 63-79
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.02/
%R 10.22436/jnsa.014.02.02
%G en
%F JNSA_2021_14_2_a1
Jantakarn, Kittisak ; Kaewcharoen, Anchalee . Strong convergence theorems for mixed 	equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 63-79. doi : 10.22436/jnsa.014.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.02/

[1] Agarwal, R. P.; Chen, J.-W.; Cho, Y. J. Strong convergence theorems for equilibrium problems and weak Bregman relatively nonexpansive mappings in Banach spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-16 | DOI | Zbl

[2] Alber, Y. I. Metric and generalized projection operators in Banach spaces: Properties and applications, In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Volume 1996 (1996), pp. 15-50 | Zbl

[3] Bauschke, H. H.; Borwein, J. M.; Combettes, P. L. Bregman monotone optimization algorithms, SIAM J. Control Optim., Volume 42 (2003), pp. 596-636

[4] Bauschke, H. H.; Combettes, P. L.; Borwein, J. M. Essential Smoothness, Essential Strict Convexity, and Legendre functions in Banach Spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI

[5] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145 | Zbl

[6] Bregman, L. M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., Volume 7 (1967), pp. 200-217 | DOI

[7] Bruck, R. E.; Reich, S. Nonexpansive projections and resolvents of accretive operators in Banch spaces, Houston J. Math., Volume 3 (1977), pp. 459-470

[8] Butnariu, D.; Iusem, A. N. Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publ., Dordrecht, 2000 | Zbl

[9] Butnariu, D.; Iusem, A. N.; Zalineacu, C. On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal., Volume 10 (2003), pp. 35-61

[10] Butnariu, D.; Reich, S.; Zaslavski, A. J. Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., Volume 7 (2001), pp. 151-174 | DOI | Zbl

[11] Butnariu, D.; Resmerita, E. Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl | DOI

[12] Ceng, L.-C.; Yao, J.-C. A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., Volume 214 (2008), pp. 186-201 | Zbl | DOI

[13] Chen, J. W.; Wan, Z. P.; Yuan, L. Y.; Zheng, Y. Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces, Int. J. Math. Math. Sci., Volume 2011 (2011), pp. 1-23 | Zbl | DOI

[14] Cholamjiak, P.; Cho, Y. J.; Suantai, S. Composite iterative schemes for maximal monotone operators in reflexive Banach spaces, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-10 | Zbl | DOI

[15] Cholamjiak, W.; Cholamjiak, P.; Suantai, S. Convergence of iterative schemes for solving fixed point of multi-valued nonself mappings and equilibrium problems, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1245-1256 | Zbl | DOI

[16] Cholamjiak, P.; Suantai, S. Iterative methods for solving equilibrium problems, variational inequalities and fixed points of nonexpansive semigroups, J. Global Optim., Volume 57 (2013), pp. 1277-1297 | Zbl | DOI

[17] Darvish, V. A new algorithm for mixed equilibrium problem and Bregman strongly nonexpansive mapping in Banach spaces, arXiv, Volume 2015 (2015), pp. 1-20

[18] Kazmi, K. R.; Ali, R.; Yousuf, S. Generalized equilibrium and fixed point problems for Bregman relatively nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-21 | DOI | Zbl

[19] Phelps, R. P. Convex Functions, Monotone Operators, and Differentiability, Springer-Verlag, Berlin, 1993 | DOI | Zbl

[20] Reich, S. A weak convergence theorem for the alternating method with Bregman distances, In: Theory and Applications of Nonlinear Operators, Volume 1996 (1996), pp. 313-318

[21] Reich, S.; Sabach, S. A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 471-485 | Zbl

[22] Reich, S.; Sabach, S. Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI

[23] Reich, S.; Sabach, S. A projection method for solving nonlinear problems in reflexive Banach spaces, J. Fixed Point Theory Appl., Volume 9 (2011), pp. 101-116 | Zbl | DOI

[24] Reich, S.; Sabach, S. Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-point algorithms for inverse problems in science and engineering, Volume 2011 (2011), pp. 301-316 | Zbl | DOI

[25] Sabach, S. Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces, SIAM J. Optim., Volume 21 (2011), pp. 1289-1308 | Zbl | DOI

[26] Shahzad, N.; Zegeye, H. Convergence theorem for common fixed points of a finite family of multi-valued Bregman relatively nonexpansive mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14 | Zbl | DOI

[27] Suantai, S.; Cho, Y. J.; Cholamjiak, P. Halpern's iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl., Volume 64 (2012), pp. 489-499 | DOI | Zbl

[28] Ugwunnadi, G. C.; Ali, B.; Idris, I.; Minjibir, M. S. Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl., Volume 231 (2014), pp. 1-16 | DOI | Zbl

[29] Zalinescu, C. Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River Edge, 2002 | Zbl

Cité par Sources :