Numerical solutions of nonlinear fractional differential equations by variational iteration method
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 54-62.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, numerical techniques are used for solving boundary value problems of nonlinear fractional differential equations. Variational iteration method is applied to approximate solutions for this equation with boundary conditions. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed method, and we compare between the numerical solutions and the exact solution of these examples.
DOI : 10.22436/jnsa.014.02.01
Classification : 6SD30, 65R20, 45F05, 26A33
Keywords: Variational iteration method, Caputo fractional derivative, nonlinear of fractional differential equations

Nagdy, A. S.  1 ; Hashem, KH. M.  1

1 Mathematics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
@article{JNSA_2021_14_2_a0,
     author = {Nagdy, A. S.  and Hashem, KH. M. },
     title = {Numerical solutions of nonlinear fractional differential equations by variational iteration method},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {54-62},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     doi = {10.22436/jnsa.014.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.01/}
}
TY  - JOUR
AU  - Nagdy, A. S. 
AU  - Hashem, KH. M. 
TI  - Numerical solutions of nonlinear fractional differential equations by variational iteration method
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 54
EP  - 62
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.01/
DO  - 10.22436/jnsa.014.02.01
LA  - en
ID  - JNSA_2021_14_2_a0
ER  - 
%0 Journal Article
%A Nagdy, A. S. 
%A Hashem, KH. M. 
%T Numerical solutions of nonlinear fractional differential equations by variational iteration method
%J Journal of nonlinear sciences and its applications
%D 2021
%P 54-62
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.01/
%R 10.22436/jnsa.014.02.01
%G en
%F JNSA_2021_14_2_a0
Nagdy, A. S. ; Hashem, KH. M. . Numerical solutions of nonlinear fractional differential equations by variational iteration method. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 54-62. doi : 10.22436/jnsa.014.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.01/

[1] Arikoglu, A.; Ozkol, I. Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals, Volume 40 (2009), pp. 521-529 | DOI | Zbl

[2] Cen, Z. D.; Le, A. B.; Xu, A. M. A robust numerical method for a fractional differential equation, Appl. Math. Comput., Volume 315 (2017), pp. 654-671 | Zbl | DOI

[3] Chen, Y. M.; Yi, M. X.; Yu, C. X. Error analysis for numerical solution of functional differential equation by Haar wavelets method, J. Comput. Sci., Volume 5 (2012), pp. 367-573

[4] Diethelm, K.; Baleanu, D.; Scalas, E.; Trujillo, J. J. Fractional calculus: models and numerical methods, World Scientific Publishing Co., Hackensack, 2012 | Zbl

[5] El-Kalla, I. L. Error estimate of the series solution to a class of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 1408-1413 | DOI | Zbl

[6] El-Sayed, A. M. A. Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal., Volume 33 (1998), pp. 181-186 | DOI | Zbl

[7] Huang, L.-L.; Liu, B.-Q.; Baleanu, D.; Wu, G.-C. Numerical solutions of interval--valued fractional nonlinear differential equations, Eur. Phys. J. PLUS, Volume 134 (2019), pp. 1-15 | DOI

[8] Jafari, H.; Kadem, A.; Baleanu, D.; Yilmaz, T. Solutions of the fractional Davey-Stewartson equations with variational iteration method, Romanian Reports in Physics, Volume 64 (2012), pp. 337-346

[9] Jafari, H.; Tajadodi, H.; Baleanu, D. A numerical a approach for fractional order Riccati differential equation using B--Spline operational matrix, Fract. Calc. Appl. Anal., Volume 18 (2015), pp. 387-399 | Zbl | DOI

[10] Kadem, A.; Kilicman, A. The approximate solution of fractional Fredholm integrodifferential equations by variational iteration and homotopy perturbation methods, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-10 | Zbl | DOI

[11] Li, W. J.; Peng, Y. Application of Adomian decomposition method to nonlinear system, Adv. Difference Equ., Volume 2020 (2020), pp. 1-67 | DOI

[12] Loverro, A. Fractional Calculus: History, Definitions and Applications for the Engineer, Rapport technique (Univeristy of Notre Dame, Department of Aerospace and Mechanical Engineering), Volume 2004 (2004), pp. 1-28

[13] Mendes, E. M. A. M.; Salgado, G. H. O.; Aguirre, L. A. Numerical solution of Caputo fractional differential equations with infinity memory effect at initial condition, Commun. Nonlinear Sci. Numer. Simul., Volume 69 (2019), pp. 237-247

[14] Meng, Z. J.; Yi, M. X.; Huang, J.; Song, L. Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials, Appl. Math. Comput., Volume 336 (2018), pp. 454-464 | Zbl | DOI

[15] Momani, S.; Noor, M. Aslam Numerical methods for fourth order fractional integro-differential equations, Appl. Math. Comput., Volume 182 (2006), pp. 754-760 | DOI | Zbl

[16] Momani, S.; Qaralleh, R. An efficient method for solving systems of fractional Integro-differential equations, Comput. Math. Appl., Volume 52 (2006), pp. 459-470 | Zbl | DOI

[17] Nawaz, Y. Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Comput. Math. Appl., Volume 61 (2011), pp. 2330-2341 | DOI | Zbl

[18] Podlubny, I. Fractional differential equations, Academic press, San Diego, 1999 | Zbl

[19] Rawashdeh, E. A. Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., Volume 176 (2006), pp. 1-6 | DOI | Zbl

[20] Ray, S. S. Numerical Solutions of Riesz Fractional Partial Differential Equations, Nonlinear Diff. Equ. Phys., Volume 2020 (2020), pp. 119-154

[21] Saadatmandi, A.; Dehghan, M. A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., Volume 59 (2010), pp. 1326-1336 | Zbl | DOI

[22] Saberi-Nadjafi, J.; Tamamgar, M. The variational iteration method: A highly promising method for solving the system of integro-differential equations, Comput. Math. Appl., Volume 56 (2008), pp. 346-351 | Zbl | DOI

[23] Sakran, M. R. A. Numerical Solutions integral and integro- differential equations using Chebyshev polynomials of the third kind, Appl. Math. Comput., Volume 351 (2019), pp. 66-82 | Zbl | DOI

[24] Semary, M. S.; Hassan, H. N.; Radwan, A. G. Modified methods for solving two classes of distributed order linear fractional differential equations, Appl. Math. Comput., Volume 323 (2018), pp. 106-119 | Zbl | DOI

[25] Yang, D.; Wang, J. R.; O'Regan, D. A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order, Appl. Math. Comput., Volume 321 (2018), pp. 654-671 | DOI | Zbl

[26] M. X. Yi; Chen, Y. M. Haar wavelet operational matrix method for solving fractional partial differential equations, CMES Comput. Model. Eng. Sci., Volume 88 (2012), pp. 229-244 | Zbl | DOI

Cité par Sources :