Voir la notice de l'article provenant de la source International Scientific Research Publications
Nagdy, A. S.  1 ; Hashem, KH. M.  1
@article{JNSA_2021_14_2_a0, author = {Nagdy, A. S. and Hashem, KH. M. }, title = {Numerical solutions of nonlinear fractional differential equations by variational iteration method}, journal = {Journal of nonlinear sciences and its applications}, pages = {54-62}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2021}, doi = {10.22436/jnsa.014.02.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.01/} }
TY - JOUR AU - Nagdy, A. S. AU - Hashem, KH. M. TI - Numerical solutions of nonlinear fractional differential equations by variational iteration method JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 54 EP - 62 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.01/ DO - 10.22436/jnsa.014.02.01 LA - en ID - JNSA_2021_14_2_a0 ER -
%0 Journal Article %A Nagdy, A. S. %A Hashem, KH. M. %T Numerical solutions of nonlinear fractional differential equations by variational iteration method %J Journal of nonlinear sciences and its applications %D 2021 %P 54-62 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.01/ %R 10.22436/jnsa.014.02.01 %G en %F JNSA_2021_14_2_a0
Nagdy, A. S. ; Hashem, KH. M. . Numerical solutions of nonlinear fractional differential equations by variational iteration method. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 2, p. 54-62. doi : 10.22436/jnsa.014.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.02.01/
[1] Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals, Volume 40 (2009), pp. 521-529 | DOI | Zbl
[2] A robust numerical method for a fractional differential equation, Appl. Math. Comput., Volume 315 (2017), pp. 654-671 | Zbl | DOI
[3] Error analysis for numerical solution of functional differential equation by Haar wavelets method, J. Comput. Sci., Volume 5 (2012), pp. 367-573
[4] Fractional calculus: models and numerical methods, World Scientific Publishing Co., Hackensack, 2012 | Zbl
[5] Error estimate of the series solution to a class of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 1408-1413 | DOI | Zbl
[6] Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal., Volume 33 (1998), pp. 181-186 | DOI | Zbl
[7] Numerical solutions of interval--valued fractional nonlinear differential equations, Eur. Phys. J. PLUS, Volume 134 (2019), pp. 1-15 | DOI
[8] Solutions of the fractional Davey-Stewartson equations with variational iteration method, Romanian Reports in Physics, Volume 64 (2012), pp. 337-346
[9] A numerical a approach for fractional order Riccati differential equation using B--Spline operational matrix, Fract. Calc. Appl. Anal., Volume 18 (2015), pp. 387-399 | Zbl | DOI
[10] The approximate solution of fractional Fredholm integrodifferential equations by variational iteration and homotopy perturbation methods, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-10 | Zbl | DOI
[11] Application of Adomian decomposition method to nonlinear system, Adv. Difference Equ., Volume 2020 (2020), pp. 1-67 | DOI
[12] Fractional Calculus: History, Definitions and Applications for the Engineer, Rapport technique (Univeristy of Notre Dame, Department of Aerospace and Mechanical Engineering), Volume 2004 (2004), pp. 1-28
[13] Numerical solution of Caputo fractional differential equations with infinity memory effect at initial condition, Commun. Nonlinear Sci. Numer. Simul., Volume 69 (2019), pp. 237-247
[14] Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials, Appl. Math. Comput., Volume 336 (2018), pp. 454-464 | Zbl | DOI
[15] Numerical methods for fourth order fractional integro-differential equations, Appl. Math. Comput., Volume 182 (2006), pp. 754-760 | DOI | Zbl
[16] An efficient method for solving systems of fractional Integro-differential equations, Comput. Math. Appl., Volume 52 (2006), pp. 459-470 | Zbl | DOI
[17] Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Comput. Math. Appl., Volume 61 (2011), pp. 2330-2341 | DOI | Zbl
[18] Fractional differential equations, Academic press, San Diego, 1999 | Zbl
[19] Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., Volume 176 (2006), pp. 1-6 | DOI | Zbl
[20] Numerical Solutions of Riesz Fractional Partial Differential Equations, Nonlinear Diff. Equ. Phys., Volume 2020 (2020), pp. 119-154
[21] A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., Volume 59 (2010), pp. 1326-1336 | Zbl | DOI
[22] The variational iteration method: A highly promising method for solving the system of integro-differential equations, Comput. Math. Appl., Volume 56 (2008), pp. 346-351 | Zbl | DOI
[23] Numerical Solutions integral and integro- differential equations using Chebyshev polynomials of the third kind, Appl. Math. Comput., Volume 351 (2019), pp. 66-82 | Zbl | DOI
[24] Modified methods for solving two classes of distributed order linear fractional differential equations, Appl. Math. Comput., Volume 323 (2018), pp. 106-119 | Zbl | DOI
[25] A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order, Appl. Math. Comput., Volume 321 (2018), pp. 654-671 | DOI | Zbl
[26] Haar wavelet operational matrix method for solving fractional partial differential equations, CMES Comput. Model. Eng. Sci., Volume 88 (2012), pp. 229-244 | Zbl | DOI
Cité par Sources :