Voir la notice de l'article provenant de la source International Scientific Research Publications
Mansour, M. Ait  1 ; Bahraoui, M.A.  2 ; El Bekkali, A.  2
@article{JNSA_2021_14_1_a5, author = {Mansour, M. Ait and Bahraoui, M.A. and El Bekkali, A. }, title = {A generalization of {Lim's} lemma}, journal = {Journal of nonlinear sciences and its applications}, pages = {48-53}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2021}, doi = {10.22436/jnsa.014.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.06/} }
TY - JOUR AU - Mansour, M. Ait AU - Bahraoui, M.A. AU - El Bekkali, A. TI - A generalization of Lim's lemma JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 48 EP - 53 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.06/ DO - 10.22436/jnsa.014.01.06 LA - en ID - JNSA_2021_14_1_a5 ER -
%0 Journal Article %A Mansour, M. Ait %A Bahraoui, M.A. %A El Bekkali, A. %T A generalization of Lim's lemma %J Journal of nonlinear sciences and its applications %D 2021 %P 48-53 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.06/ %R 10.22436/jnsa.014.01.06 %G en %F JNSA_2021_14_1_a5
Mansour, M. Ait ; Bahraoui, M.A. ; El Bekkali, A. . A generalization of Lim's lemma. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 1, p. 48-53. doi : 10.22436/jnsa.014.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.06/
[1] Topologies on closed and closed convex set, Kluwer Academic Publishers Group, Dordrecht, 1993
[2] Fixed-point theorems, C. R. Acad. Bulgare Sci., Volume 25 (1972), pp. 727-730 | Zbl | EuDML
[3] Implicit Functions and Solution Mappings, Springer, New York, 2014 | DOI | Zbl
[4] A Generalization of Nadler's fixed point theorem, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 148-151 | Zbl | DOI
[5] A generalization of a fixed point theorem of Reich, Canad. Math. Bull., Volume 16 (1973), pp. 201-206 | DOI | Zbl
[6] Some results on fixed points, Bull. Calcutta Math. Soc., Volume 60 (1968), pp. 71-76
[7] On fixed-point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., Volume 110 (1985), pp. 436-441 | Zbl | DOI
[8] Multivalued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488
[9] Kannan's fixed point theorem, Boll. Un. Mat. Ital. (4), Volume 4 (1971), pp. 1-11 | Zbl
Cité par Sources :