A generalization of Lim's lemma
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 1, p. 48-53.

Voir la notice de l'article provenant de la source International Scientific Research Publications

It follows from [A. L. Dontchev, R. T. Rockafellar, Springer, New York, (2014), Theorem 5I.3] that the distance from a point $x$ to the set of fixed points of a set-valued contraction mapping $\Phi$ is bounded by a constant times the distance from $x$ to $\Phi$. In this paper, we generalize both this result and Lim's lemma for a larger class of set-valued mappings instead of the class of set-valued contraction mappings. As consequence, we obtain some known fixed points theorems.
DOI : 10.22436/jnsa.014.01.06
Classification : 47H10, 54H25
Keywords: Fixed point, Lim's lemma, Nadler's fixed point theorem, contraction mappings, Hardy-Rogers mappings

Mansour, M. Ait  1 ; Bahraoui, M.A.  2 ; El Bekkali, A.  2

1 Département de Physique, LPFAS, Faculté Poly-disciplinaire, Safi, Université Cadi Ayyad, Morocco
2 Département de Mathématiques, Faculté des Sciences et Techniques, Tanger, Université Abdelmalek Essaadi, Morocco
@article{JNSA_2021_14_1_a5,
     author = {Mansour, M. Ait  and Bahraoui, M.A.  and El Bekkali, A. },
     title = {A generalization of {Lim's} lemma},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {48-53},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     doi = {10.22436/jnsa.014.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.06/}
}
TY  - JOUR
AU  - Mansour, M. Ait 
AU  - Bahraoui, M.A. 
AU  - El Bekkali, A. 
TI  - A generalization of Lim's lemma
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 48
EP  - 53
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.06/
DO  - 10.22436/jnsa.014.01.06
LA  - en
ID  - JNSA_2021_14_1_a5
ER  - 
%0 Journal Article
%A Mansour, M. Ait 
%A Bahraoui, M.A. 
%A El Bekkali, A. 
%T A generalization of Lim's lemma
%J Journal of nonlinear sciences and its applications
%D 2021
%P 48-53
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.06/
%R 10.22436/jnsa.014.01.06
%G en
%F JNSA_2021_14_1_a5
Mansour, M. Ait ; Bahraoui, M.A. ; El Bekkali, A. . A generalization of Lim's lemma. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 1, p. 48-53. doi : 10.22436/jnsa.014.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.06/

[1] Beer, G. Topologies on closed and closed convex set, Kluwer Academic Publishers Group, Dordrecht, 1993

[2] Chatterjea, S. K. Fixed-point theorems, C. R. Acad. Bulgare Sci., Volume 25 (1972), pp. 727-730 | Zbl | EuDML

[3] Dontchev, A. L.; Rockafellar, R. T. Implicit Functions and Solution Mappings, Springer, New York, 2014 | DOI | Zbl

[4] Gordji, M. Eshaghi; Baghani, H.; Khodaei, H.; Ramezani, M. A Generalization of Nadler's fixed point theorem, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 148-151 | Zbl | DOI

[5] Hardy, G. E.; Rogers, T. D. A generalization of a fixed point theorem of Reich, Canad. Math. Bull., Volume 16 (1973), pp. 201-206 | DOI | Zbl

[6] Kannan, R. Some results on fixed points, Bull. Calcutta Math. Soc., Volume 60 (1968), pp. 71-76

[7] Lim, T.- C. On fixed-point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., Volume 110 (1985), pp. 436-441 | Zbl | DOI

[8] Nadler, S. B. Multivalued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488

[9] Reich, S. Kannan's fixed point theorem, Boll. Un. Mat. Ital. (4), Volume 4 (1971), pp. 1-11 | Zbl

Cité par Sources :