Voir la notice de l'article provenant de la source International Scientific Research Publications
Abd-Elhamed, Gehad M.  1
@article{JNSA_2021_14_1_a4, author = {Abd-Elhamed, Gehad M. }, title = {Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {39-47}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2021}, doi = {10.22436/jnsa.014.01.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.05/} }
TY - JOUR AU - Abd-Elhamed, Gehad M. TI - Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2021 SP - 39 EP - 47 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.05/ DO - 10.22436/jnsa.014.01.05 LA - en ID - JNSA_2021_14_1_a4 ER -
%0 Journal Article %A Abd-Elhamed, Gehad M. %T Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces %J Journal of nonlinear sciences and its applications %D 2021 %P 39-47 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.05/ %R 10.22436/jnsa.014.01.05 %G en %F JNSA_2021_14_1_a4
Abd-Elhamed, Gehad M. . Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 1, p. 39-47. doi : 10.22436/jnsa.014.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.05/
[1] Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput., Volume 215 (2009), pp. 262-269 | DOI
[2] Fixed point theorems for contractions and generalized contractions in $G$-metric spaces, J. Interpolat. Approx. Sci. Comput., Volume 2015 (2015), pp. 20-27
[3] Related fixed point theorems on two complete and compact G-metric spaces, Int. J. Eng. Res. Tech., Volume 12 (2019), pp. 446-456
[4] On coupled fixed point results in asymmetric $G$-metric spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-12 | Zbl | DOI
[5] Common fixed point of generalized weak contractive mappings in partially ordered $G_{b}$-metric spaces, Filomat, Volume 28 (2014), pp. 1087-1101 | Zbl | DOI
[6] Fixed point theory for quasi-contraction maps in $b$-metric spaces, Fixed Point Theory, Volume 15 (2014), pp. 351-358 | Zbl
[7] On generalized weakly $g$-contraction mapping in $g$-metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4222-4229 | DOI | Zbl
[8] Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276 | Zbl
[9] Fixed point results for $\alpha$-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 362-378
[10] Some coincidence point results for generalized $(\psi, \phi)$-weakly contractive mappings in ordered $G$-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-23 | Zbl | DOI
[11] A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297 | Zbl
[12] Cyclic generalized $\phi$-contractions in $b$-metric spaces and an application to integral equations, Filomat, Volume 28 (2014), pp. 2047-2057 | Zbl | DOI
[13] Fixed point theorems for implicit contractive mappings, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, Volume 7 (1997), pp. 129-133 | Zbl
[14] Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., Volume 32 (1999), pp. 157-163 | DOI | Zbl
[15] A general fixed point theorem for mappings satisfying an implicit relation in complete $G$-metric spaces, Gazi Univ. J. Sci., Volume 25 (2012), pp. 403-408
[16] A general fixed point theorem for pairs of weakly compatible mappings in $G$-metric spaces, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 151-160 | Zbl
[17] Two general fixed point theorems for pairs of weakly compatible mappings in $G$-metric spaces, Novi Sad J. Math., Volume 42 (2012), pp. 49-60 | Zbl
[18] Fixed point theorems for mappings satisfying an implicit relation in complete $G$-metric spaces, Bul. Inst. Politeh. Iasi, Sect. I, Mat. Mec. Teor. Fiz., Volume 59 (2013), pp. 97-123 | Zbl
[19] A note on some recent fixed point results for cyclic contractions in $b$-metric spaces and an application to integral equations, Appl. Math. Comput., Volume 273 (2016), pp. 155-164 | DOI | Zbl
Cité par Sources :