Fixed point results for $(\beta ,\alpha )$-implicit contractions in two generalized b-metric spaces
Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 1, p. 39-47.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to introduce ($\beta $,$\alpha )$-implicit contractive of two mappings on two generalized b-metric spaces and derive some new fixed point theorems for ($\beta $,$\alpha )$-implicit contractive in two complete and compact generalized b-Metric spaces.
DOI : 10.22436/jnsa.014.01.05
Classification : 47H10, 54H25
Keywords: Fixed points, (\(\beta \),\(\alpha )\)-implicit contractions, generalized b-metric spaces

Abd-Elhamed, Gehad M.  1

1 Department of Mathematics, College of Girls, Ain Shams University, Egypt;College of Science and Humanities studies, Sattam Bin Abdul-Aziz University, Saudi Arabia
@article{JNSA_2021_14_1_a4,
     author = {Abd-Elhamed, Gehad M. },
     title = {Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {39-47},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     doi = {10.22436/jnsa.014.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.05/}
}
TY  - JOUR
AU  - Abd-Elhamed, Gehad M. 
TI  - Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2021
SP  - 39
EP  - 47
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.05/
DO  - 10.22436/jnsa.014.01.05
LA  - en
ID  - JNSA_2021_14_1_a4
ER  - 
%0 Journal Article
%A Abd-Elhamed, Gehad M. 
%T Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2021
%P 39-47
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.05/
%R 10.22436/jnsa.014.01.05
%G en
%F JNSA_2021_14_1_a4
Abd-Elhamed, Gehad M. . Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces. Journal of nonlinear sciences and its applications, Tome 14 (2021) no. 1, p. 39-47. doi : 10.22436/jnsa.014.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.014.01.05/

[1] Abbas, M.; Rhoades, B. E. Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput., Volume 215 (2009), pp. 262-269 | DOI

[2] Abd-Elhamed, G. M. Fixed point theorems for contractions and generalized contractions in $G$-metric spaces, J. Interpolat. Approx. Sci. Comput., Volume 2015 (2015), pp. 20-27

[3] Abd-Elhamed, G. M. Related fixed point theorems on two complete and compact G-metric spaces, Int. J. Eng. Res. Tech., Volume 12 (2019), pp. 446-456

[4] Agarwal, R. P.; Kadelburg, Z.; Radenović, S. On coupled fixed point results in asymmetric $G$-metric spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-12 | Zbl | DOI

[5] Aghajani, A.; Abbas, M.; Roshan, J. R. Common fixed point of generalized weak contractive mappings in partially ordered $G_{b}$-metric spaces, Filomat, Volume 28 (2014), pp. 1087-1101 | Zbl | DOI

[6] Amini-Harandi, A. Fixed point theory for quasi-contraction maps in $b$-metric spaces, Fixed Point Theory, Volume 15 (2014), pp. 351-358 | Zbl

[7] Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly $g$-contraction mapping in $g$-metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4222-4229 | DOI | Zbl

[8] Czerwik, S. Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276 | Zbl

[9] Hussain, N.; Vetro, C.; Vetro, F. Fixed point results for $\alpha$-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 362-378

[10] Mustafa, Z.; Parvaneh, V.; Abbas, M.; Roshan, J. R. Some coincidence point results for generalized $(\psi, \phi)$-weakly contractive mappings in ordered $G$-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-23 | Zbl | DOI

[11] Mustafa, Z.; Sims, B. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297 | Zbl

[12] Nashine, H. K.; Kadelburg, Z. Cyclic generalized $\phi$-contractions in $b$-metric spaces and an application to integral equations, Filomat, Volume 28 (2014), pp. 2047-2057 | Zbl | DOI

[13] Popa, V. Fixed point theorems for implicit contractive mappings, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, Volume 7 (1997), pp. 129-133 | Zbl

[14] Popa, V. Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., Volume 32 (1999), pp. 157-163 | DOI | Zbl

[15] Popa, V.; Patriciu, A.-M. A general fixed point theorem for mappings satisfying an implicit relation in complete $G$-metric spaces, Gazi Univ. J. Sci., Volume 25 (2012), pp. 403-408

[16] Popa, V.; Patriciu, A.-M. A general fixed point theorem for pairs of weakly compatible mappings in $G$-metric spaces, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 151-160 | Zbl

[17] Popa, V.; Patriciu, A.-M. Two general fixed point theorems for pairs of weakly compatible mappings in $G$-metric spaces, Novi Sad J. Math., Volume 42 (2012), pp. 49-60 | Zbl

[18] Popa, V.; Patriciu, A.-M. Fixed point theorems for mappings satisfying an implicit relation in complete $G$-metric spaces, Bul. Inst. Politeh. Iasi, Sect. I, Mat. Mec. Teor. Fiz., Volume 59 (2013), pp. 97-123 | Zbl

[19] Radenović, S.; Došenović, T.; Lampert, T. A.; Golubovíć, Z. A note on some recent fixed point results for cyclic contractions in $b$-metric spaces and an application to integral equations, Appl. Math. Comput., Volume 273 (2016), pp. 155-164 | DOI | Zbl

Cité par Sources :