Voir la notice de l'article provenant de la source International Scientific Research Publications
Aldahlan, Maha A.  1
@article{JNSA_2020_13_6_a4, author = {Aldahlan, Maha A. }, title = {Estimation of type {II} truncated {Fr'echet} inverse exponential distribution under censored data}, journal = {Journal of nonlinear sciences and its applications}, pages = {354-363}, publisher = {mathdoc}, volume = {13}, number = {6}, year = {2020}, doi = {10.22436/jnsa.013.06.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.05/} }
TY - JOUR AU - Aldahlan, Maha A. TI - Estimation of type II truncated Fr'echet inverse exponential distribution under censored data JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 354 EP - 363 VL - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.05/ DO - 10.22436/jnsa.013.06.05 LA - en ID - JNSA_2020_13_6_a4 ER -
%0 Journal Article %A Aldahlan, Maha A. %T Estimation of type II truncated Fr'echet inverse exponential distribution under censored data %J Journal of nonlinear sciences and its applications %D 2020 %P 354-363 %V 13 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.05/ %R 10.22436/jnsa.013.06.05 %G en %F JNSA_2020_13_6_a4
Aldahlan, Maha A. . Estimation of type II truncated Fr'echet inverse exponential distribution under censored data. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 6, p. 354-363. doi : 10.22436/jnsa.013.06.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.05/
[1] Truncated Fréchet-$G$ generator of distributions, Appl. Math., Volume 7 (2017), pp. 51-66
[2] Type II Truncated Fréchet Generated Family of Distributions, Int. J. Math. Appl., Volume 7 (2019), pp. 221-228
[3] The inverse Weibull inverse exponential distribution with application, Int. J. Contemp. Math. Sci., Volume 14 (2019), pp. 17-30
[4] Truncated inverted Kumaraswamy generated family of distributions with applications, Entropy, Volume 21 (2019), pp. 1-22
[5] Statistical Analysis of Reliability Data, Chapman and Hall, London, 1991
[6] The beta inverse Weibull distribution, Int. Trans. Math. Sci. Comput., Volume 3 (2010), pp. 113-119 | Zbl
[7] Truncated Weibull-G more flexible and more reliable thangeta-G distribution, Int. J. Stat. Probab., Volume 6 (2017), pp. 1-17
[8] The logistic inverse exponential distribution: Basic structural properties and application, In Proceedings of the World Congress on Engineering and Computer Science (San Francisco, U.S.A.), Volume 2018 (2018), pp. 1-4
Cité par Sources :