Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic $(\phi,\psi)$-contractive mappings
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 6, p. 323-329.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduced the concept of intuitionistic $(\phi,\psi)$-contractive mappings and proved some a common fixed point theorems in intuitionistic fuzzy metric space under $(\phi,\psi)$-contractive mappings and weakly commuting intuitionistic fuzzy metric space.
DOI : 10.22436/jnsa.013.06.03
Classification : 47H10, 54H25
Keywords: Intuitionistic fuzzy metric space, \((\phi,\psi)\)-contractive mapping, weakly commuting, fixed point

Abu-Donia, H. M.  1 ; Atia, H. A.  1 ; Khater, Omnia M. A.  2

1 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
2 Department of Basic Science, Zagazig Higher Institute of Engineering and Technology, Egypt
@article{JNSA_2020_13_6_a2,
     author = {Abu-Donia, H. M.  and Atia, H. A.  and Khater, Omnia M. A. },
     title = {Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic \((\phi,\psi)\)-contractive mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {323-329},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     doi = {10.22436/jnsa.013.06.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.03/}
}
TY  - JOUR
AU  - Abu-Donia, H. M. 
AU  - Atia, H. A. 
AU  - Khater, Omnia M. A. 
TI  - Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic \((\phi,\psi)\)-contractive mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 323
EP  - 329
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.03/
DO  - 10.22436/jnsa.013.06.03
LA  - en
ID  - JNSA_2020_13_6_a2
ER  - 
%0 Journal Article
%A Abu-Donia, H. M. 
%A Atia, H. A. 
%A Khater, Omnia M. A. 
%T Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic \((\phi,\psi)\)-contractive mappings
%J Journal of nonlinear sciences and its applications
%D 2020
%P 323-329
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.03/
%R 10.22436/jnsa.013.06.03
%G en
%F JNSA_2020_13_6_a2
Abu-Donia, H. M. ; Atia, H. A. ; Khater, Omnia M. A. . Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic \((\phi,\psi)\)-contractive mappings. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 6, p. 323-329. doi : 10.22436/jnsa.013.06.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.03/

[1] Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, Volume 29 (2006), pp. 1073-1078 | DOI | Zbl

[2] Atanassov, K. T. Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg, 1999 | Zbl | DOI

[3] Gregori, V.; Minana, J.-J.; Miravet, D. Contractive sequences in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 379 (2020), pp. 125-133 | DOI

[4] Jungck, G.; Rhoades, B. E. Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., Volume 29 (1998), pp. 227-238

[5] Kramosil, I.; Michálek, J. Fuzzy metric and statistical metric spaces, Kybernetika (Prague), Volume 11 (1975), pp. 336-344 | EuDML | Zbl

[6] Miheţ, D. Fuzzy $\psi$--contractive mappings in non--Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, Volume 159 (2008), pp. 739-744 | Zbl | DOI

[7] Park, J. H. ntuitionistic fuzzy metric spaces, Chaos Solitons Fractals, Volume 22 (2004), pp. 1039-1046 | Zbl | DOI

[8] Sessa, S. On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.), Volume 32 (1982), pp. 149-153 | Zbl

[9] Turkoglu, D.; Alaca, C.; Cho, Y. J.; Yildiz, C. Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. Comput., Volume 22 (2006), pp. 411-424 | DOI | Zbl

[10] Vetro, C. Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, Volume 162 (2011), pp. 84-90 | DOI | Zbl

[11] Wu, X.; Chen, G. Answering an open question in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 2019 (2019), pp. 1-4 | DOI

[12] Zadeh, L. A. Fuzzy sets, Inf. Control, Volume 8 (1965), pp. 338-353 | Zbl | DOI

[13] Zheng, D.; Wang, P. Meir--Keeler theorems in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 370 (2019), pp. 120-128 | DOI | Zbl

Cité par Sources :