Epi Mönch type maps in the weak topology setting
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 6, p. 317-322.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we present coincidence, homotopy and normalization type results in the weak topology setting for general classes of Mönch type maps.
DOI : 10.22436/jnsa.013.06.02
Classification : 47H10, 54H25, 55M20
Keywords: Epi maps, coincidence, homotopy, normalization

O'Regan, Donal 1

1 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
@article{JNSA_2020_13_6_a1,
     author = {O'Regan, Donal},
     title = {Epi {M\"onch} type maps in the weak topology setting},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {317-322},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     doi = {10.22436/jnsa.013.06.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.02/}
}
TY  - JOUR
AU  - O'Regan, Donal
TI  - Epi Mönch type maps in the weak topology setting
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 317
EP  - 322
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.02/
DO  - 10.22436/jnsa.013.06.02
LA  - en
ID  - JNSA_2020_13_6_a1
ER  - 
%0 Journal Article
%A O'Regan, Donal
%T Epi Mönch type maps in the weak topology setting
%J Journal of nonlinear sciences and its applications
%D 2020
%P 317-322
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.02/
%R 10.22436/jnsa.013.06.02
%G en
%F JNSA_2020_13_6_a1
O'Regan, Donal. Epi Mönch type maps in the weak topology setting. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 6, p. 317-322. doi : 10.22436/jnsa.013.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.02/

[1] Agarwal, R. P.; O'Regan, D. Continuation methods for closed, weakly closed, DKT and WDKT maps, Comput. Math. Appl., Volume 38 (1999), pp. 81-88 | DOI | Zbl

[2] Furi, M.; Martelli, M.; Vignoli, A. On the solvability of nonlinear operator equations in normed spaces, Ann. Math. Pura Appl. (4), Volume 124 (1980), pp. 321-343 | DOI | Zbl

[3] Gabor, G.; Górniewicz, L.; Ślosarski, M. Generalized topological essentiality and coincidence points of multivalued maps, Set-Valued Var. Anal., Volume 17 (2009), pp. 1-19 | DOI | Zbl

[4] Mönch, H. Boundary value problems for nonlinear ordinary differential equations in Banach spaces, Nonlinear Anal., Volume 4 (1980), pp. 985-999 | Zbl | DOI

[5] O'Regan, D. Continuation methods based on essential and $0$--epi maps, Acta Appl. Math., Volume 54 (1998), pp. 319-330 | Zbl | DOI

[6] O'Regan, D. Weakly contractive zero epi maps, Math. Comput. Modelling, Volume 30 (1999), pp. 21-25 | DOI | Zbl

[7] O'Regan, D. Maps with weakly sequentially closed graphs satisfying compactness conditions on countable sets, Pure and Applied Functional Analysis

[8] O’Regan, D. Coincidence results for compositions of multivalued maps based on countable compactness principles, J. Nonlinear Convex Anal., Volume 21 (2020), pp. 1-7

Cité par Sources :