Fixed point approximations of noncommutative generic 2-generalized Bregman nonspreading mappings with equilibriums
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 6, p. 303-316.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a Halpern type iterative scheme for finding a common element in the set of fixed points of generic 2-generalized Bregman nonspreading mappings and the solution set of equilibrium problem have been proposed. We also prove that the sequence generated by the scheme converges strongly to the element in a real reflexive Banach space. Our results improve and generalize some announced results in the literature.
DOI : 10.22436/jnsa.013.06.01
Classification : 47H09, 47H10, 47J25
Keywords: invex set, normally 2-generalized hybrid mapping, fixed point, generic 2-generalized Bregman nonspreading mapping, equilibrium problem

Ali, Bashir  1 ; Haruna, Lawal Yusuf  2

1 Department of Mathematical Sciences, Bayero University, Kano, Nigeria
2 Department of Mathematical Sciences, Kaduna State University, Kaduna, Nigeria
@article{JNSA_2020_13_6_a0,
     author = {Ali, Bashir  and Haruna, Lawal Yusuf },
     title = {Fixed point approximations of noncommutative generic 2-generalized {Bregman} nonspreading mappings with equilibriums},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {303-316},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     doi = {10.22436/jnsa.013.06.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.01/}
}
TY  - JOUR
AU  - Ali, Bashir 
AU  - Haruna, Lawal Yusuf 
TI  - Fixed point approximations of noncommutative generic 2-generalized Bregman nonspreading mappings with equilibriums
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 303
EP  - 316
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.01/
DO  - 10.22436/jnsa.013.06.01
LA  - en
ID  - JNSA_2020_13_6_a0
ER  - 
%0 Journal Article
%A Ali, Bashir 
%A Haruna, Lawal Yusuf 
%T Fixed point approximations of noncommutative generic 2-generalized Bregman nonspreading mappings with equilibriums
%J Journal of nonlinear sciences and its applications
%D 2020
%P 303-316
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.01/
%R 10.22436/jnsa.013.06.01
%G en
%F JNSA_2020_13_6_a0
Ali, Bashir ; Haruna, Lawal Yusuf . Fixed point approximations of noncommutative generic 2-generalized Bregman nonspreading mappings with equilibriums. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 6, p. 303-316. doi : 10.22436/jnsa.013.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.01/

[1] Alber, Y. I. The Young-Fenchel Transformation and some new characteristics of Banach Spaces, In: Functional Spaces, Volume 2007 (2007), pp. 1-19

[2] Ali, B.; Harbau, M. H.; Yusuf, L. H. Existence Theorems for Attractive Points of Semigroups of Bregman Generalized Nonspreading Mappings in Banach Spaces, Adv. Oper. Theory, Volume 2 (2017), pp. 257-268 | Zbl | DOI

[3] Ali, B.; Haruna, L. Y. Iterative Approximations of Attractive Point of a New Generalized Bregman Nonspreading Mapping in Banach Spaces, Bull. Iranian Math. Soc., Volume 46 (2020), pp. 331-354 | Zbl | DOI

[4] Ali, B.; Yusuf, L. H.; Harbau, M. H. Common Attractive Points Approximation for Family of Generalized Bregman Nonspreading Mappings in Banach Space, J. Nonlinear Convex Anal.

[5] Alizadeh, S.; Moradlou, F. Weak Convergence Theorems for $2$-Generalized Hybrid Mappings and Equilibrium Problems, Commun. Korean Math. Soc., Volume 31 (2016), pp. 765-777 | Zbl | DOI

[6] Asplund, E.; Rockafellar, R. T. Gradient of Convex Function, Trans. Amer. Math. Soc., Volume 139 (1969), pp. 443-467 | DOI

[7] Bauschke, H. H.; Borwein, J. M. Legendre Function and the Method of Bregman Projections, J. Convex Anal., Volume 4 (1997), pp. 27-67 | Zbl

[8] Bauschke, H. H.; Combettes, P. L.; Borwein, J. M. Essential Smoothness, Essential Strict Convexity, and Legendre functions in Banach Spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI

[9] Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145 | Zbl

[10] Bregman, L. M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., Volume 7 (1967), pp. 200-217 | DOI

[11] Butnariu, D.; Iusem, A. N. Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publ., Dordrecht, 2000 | Zbl

[12] Butnariu, D.; Resmerita, E. Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl | DOI

[13] Censor, Y.; Lent, A. An Iterative row-action Method Interval Convex Programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | DOI | Zbl

[14] Combettes, P. L.; Hirstoaga, S. A. Equilibrium Programming in Hilbert Spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136 | Zbl

[15] Eskandani, G. Z.; Raeisi, M.; Kim, J. K. A Strong Convergence theorem for Bregman quasi-nonexpansive mappings with applications, Revista de la Real Academia de la Ciancias Exactas, Fisicas y, Naturales. Serie A. Mathematics, Volume 113 (2019), pp. 353-366 | DOI

[16] Hiriart-Urruty, J.-B.; Lemaréchal, C. Convex analysis and minimization algorithms. II. Advanced theory and bundle methods, Springer-Verlag, Berlin, 1993 | Zbl

[17] Hojo, M.; Kondo, A.; Takahashi, W. Weak and Strong Convergence Theorems for Commutative Normally 2-Generalized Hybrid Mappings in Hilbert Spaces, Linear Nonlinear Anal., Volume 4 (2018), pp. 117-134

[18] Kohsaka, F.; Takahashi, W. Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 505-523 | Zbl

[19] Kondo, A.; Takahashi, W. Attractive points and weak convergence theorems for normally N-generalized hybrid mappings in Hilbert spaces, Linear Nonlinear Anal., Volume 3 (2017), pp. 297-310

[20] Maingé, P.-E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | Zbl | DOI

[21] Martín-Márquez, V.; Reich, S.; Sabach, S. Iterative Methods for Approximating Fixed Points of Bregman Nonexpansive Operators, Discrete Contin. Dyn. Syst. Ser. S, Volume 6 (2013), pp. 1043-1063 | Zbl | DOI

[22] Maruyama, T.; Takahashi, W.; Yao, M. Fixed Point and Ergodic Theorems for New Nonlinear Mappings in Hilbert Spaces, J. Nonlinear Convex Anal., Volume 12 (2011), pp. 185-197 | Zbl

[23] Naraghirad, E.; Wong, N.-C.; Yao, J.-C. Applications of Bregman-Opial Property to Bregman Nonspreading Mappings in Banach Spaces, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-14 | DOI | Zbl

[24] Naraghirad, E.; Yao, J.-C. Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-43 | Zbl | DOI

[25] Reich, S.; Sabach, S. Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-point algorithms for inverse problems in science and engineering, Volume 2011 (2011), pp. 301-316 | Zbl | DOI

[26] Resmerita, E. On Total Convexity, Bregman Projections and Stability in Banach Spaces, J. Convex Anal., Volume 11 (2004), pp. 1-16

[27] Takahashi, W. Convex Analysis and Approximation of Fixed Points, Yokohama Publ., Yokohama, 2000

[28] Takahashi, S.; Takahashi, W. Weak and strong convergence theorems for noncommutative normally $2$-generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., Volume 19 (2018), pp. 1427-1441

[29] Takahashi, W.; Wen, C.-F.; Yao, J.-C. Strong convergence theorems by hybrid methods for noncommutative normally $2$-generalized hybrid mappings in Hilbert spaces, Appl. Anal. Optim., Volume 3 (2019), pp. 43-56

[30] Xu, H.-K. Another Control Condition in an Iterativemethod for Nonexpansive Mappings, Bull. Austral. Math. Soc., Volume 65 (2002), pp. 109-113 | DOI

[31] Zalinescu, C. Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River Edge, 2002 | Zbl

Cité par Sources :