Voir la notice de l'article provenant de la source International Scientific Research Publications
Ali, Bashir  1 ; Haruna, Lawal Yusuf  2
@article{JNSA_2020_13_6_a0, author = {Ali, Bashir and Haruna, Lawal Yusuf }, title = {Fixed point approximations of noncommutative generic 2-generalized {Bregman} nonspreading mappings with equilibriums}, journal = {Journal of nonlinear sciences and its applications}, pages = {303-316}, publisher = {mathdoc}, volume = {13}, number = {6}, year = {2020}, doi = {10.22436/jnsa.013.06.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.01/} }
TY - JOUR AU - Ali, Bashir AU - Haruna, Lawal Yusuf TI - Fixed point approximations of noncommutative generic 2-generalized Bregman nonspreading mappings with equilibriums JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 303 EP - 316 VL - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.01/ DO - 10.22436/jnsa.013.06.01 LA - en ID - JNSA_2020_13_6_a0 ER -
%0 Journal Article %A Ali, Bashir %A Haruna, Lawal Yusuf %T Fixed point approximations of noncommutative generic 2-generalized Bregman nonspreading mappings with equilibriums %J Journal of nonlinear sciences and its applications %D 2020 %P 303-316 %V 13 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.01/ %R 10.22436/jnsa.013.06.01 %G en %F JNSA_2020_13_6_a0
Ali, Bashir ; Haruna, Lawal Yusuf . Fixed point approximations of noncommutative generic 2-generalized Bregman nonspreading mappings with equilibriums. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 6, p. 303-316. doi : 10.22436/jnsa.013.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.06.01/
[1] The Young-Fenchel Transformation and some new characteristics of Banach Spaces, In: Functional Spaces, Volume 2007 (2007), pp. 1-19
[2] Existence Theorems for Attractive Points of Semigroups of Bregman Generalized Nonspreading Mappings in Banach Spaces, Adv. Oper. Theory, Volume 2 (2017), pp. 257-268 | Zbl | DOI
[3] Iterative Approximations of Attractive Point of a New Generalized Bregman Nonspreading Mapping in Banach Spaces, Bull. Iranian Math. Soc., Volume 46 (2020), pp. 331-354 | Zbl | DOI
[4] Common Attractive Points Approximation for Family of Generalized Bregman Nonspreading Mappings in Banach Space, J. Nonlinear Convex Anal.
[5] Weak Convergence Theorems for $2$-Generalized Hybrid Mappings and Equilibrium Problems, Commun. Korean Math. Soc., Volume 31 (2016), pp. 765-777 | Zbl | DOI
[6] Gradient of Convex Function, Trans. Amer. Math. Soc., Volume 139 (1969), pp. 443-467 | DOI
[7] Legendre Function and the Method of Bregman Projections, J. Convex Anal., Volume 4 (1997), pp. 27-67 | Zbl
[8] Essential Smoothness, Essential Strict Convexity, and Legendre functions in Banach Spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI
[9] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145 | Zbl
[10] The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., Volume 7 (1967), pp. 200-217 | DOI
[11] Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publ., Dordrecht, 2000 | Zbl
[12] Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl | DOI
[13] An Iterative row-action Method Interval Convex Programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | DOI | Zbl
[14] Equilibrium Programming in Hilbert Spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136 | Zbl
[15] A Strong Convergence theorem for Bregman quasi-nonexpansive mappings with applications, Revista de la Real Academia de la Ciancias Exactas, Fisicas y, Naturales. Serie A. Mathematics, Volume 113 (2019), pp. 353-366 | DOI
[16] Convex analysis and minimization algorithms. II. Advanced theory and bundle methods, Springer-Verlag, Berlin, 1993 | Zbl
[17] Weak and Strong Convergence Theorems for Commutative Normally 2-Generalized Hybrid Mappings in Hilbert Spaces, Linear Nonlinear Anal., Volume 4 (2018), pp. 117-134
[18] Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 505-523 | Zbl
[19] Attractive points and weak convergence theorems for normally N-generalized hybrid mappings in Hilbert spaces, Linear Nonlinear Anal., Volume 3 (2017), pp. 297-310
[20] Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | Zbl | DOI
[21] Iterative Methods for Approximating Fixed Points of Bregman Nonexpansive Operators, Discrete Contin. Dyn. Syst. Ser. S, Volume 6 (2013), pp. 1043-1063 | Zbl | DOI
[22] Fixed Point and Ergodic Theorems for New Nonlinear Mappings in Hilbert Spaces, J. Nonlinear Convex Anal., Volume 12 (2011), pp. 185-197 | Zbl
[23] Applications of Bregman-Opial Property to Bregman Nonspreading Mappings in Banach Spaces, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-14 | DOI | Zbl
[24] Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-43 | Zbl | DOI
[25] Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-point algorithms for inverse problems in science and engineering, Volume 2011 (2011), pp. 301-316 | Zbl | DOI
[26] On Total Convexity, Bregman Projections and Stability in Banach Spaces, J. Convex Anal., Volume 11 (2004), pp. 1-16
[27] Convex Analysis and Approximation of Fixed Points, Yokohama Publ., Yokohama, 2000
[28] Weak and strong convergence theorems for noncommutative normally $2$-generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., Volume 19 (2018), pp. 1427-1441
[29] Strong convergence theorems by hybrid methods for noncommutative normally $2$-generalized hybrid mappings in Hilbert spaces, Appl. Anal. Optim., Volume 3 (2019), pp. 43-56
[30] Another Control Condition in an Iterativemethod for Nonexpansive Mappings, Bull. Austral. Math. Soc., Volume 65 (2002), pp. 109-113 | DOI
[31] Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River Edge, 2002 | Zbl
Cité par Sources :