Voir la notice de l'article provenant de la source International Scientific Research Publications
Youssef, M. I.  1
@article{JNSA_2020_13_5_a5, author = {Youssef, M. I. }, title = {Caputo-Katugampola fractional {Volterra} functional differential equations with a vanishing lag function}, journal = {Journal of nonlinear sciences and its applications}, pages = {293-302}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, doi = {10.22436/jnsa.013.05.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.06/} }
TY - JOUR AU - Youssef, M. I. TI - Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 293 EP - 302 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.06/ DO - 10.22436/jnsa.013.05.06 LA - en ID - JNSA_2020_13_5_a5 ER -
%0 Journal Article %A Youssef, M. I. %T Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function %J Journal of nonlinear sciences and its applications %D 2020 %P 293-302 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.06/ %R 10.22436/jnsa.013.05.06 %G en %F JNSA_2020_13_5_a5
Youssef, M. I. . Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 293-302. doi : 10.22436/jnsa.013.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.06/
[1] Fractional Differential Equations With Dependence on the Caputo–Katugampola Derivative, J. Comput. Nonlinear Dynam., Volume 11 (2016), pp. 1-11 | DOI
[2] Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, Hoboken, 2014 | Zbl | DOI
[3] Numerical methods for delay differential equations. Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2003
[4] Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory (Babes-Bolyai Univ., Cluj-Napoca), Volume 3 (1995), pp. 1-14 | Zbl
[5] Fractional Calculus and Fractional Differential Equations, Birkhäuser, Singapore, 2019 | DOI | Zbl
[6] Existence and approximation of solutions of fractional order iterative differential equations, Central Eur. J. Phys., Volume 11 (2013), pp. 1377-1386 | DOI
[7] The functional differential equation $x'(t)=x(x(t))$, J. Differential Equations, Volume 54 (1984), pp. 390-400 | DOI
[8] On the existence, uniqueness, and stability behavior of a random solution to a non local perturbed stochastic fractional integro-differential equation, Life Sci. J., Volume 10 (2013), pp. 3368-3376
[9] On some nonlocal perturbed random fractional integro-differential equations, Life Sci. J., Volume 10 (2013), pp. 1601-1609
[10] On stochastic solutions of nonlocal random functional integral equations, Arab J. Math. Sci., Volume 25 (2019), pp. 180-188 | DOI | Zbl
[11] Solvability of the functional integro-differential equation with self-reference and state-dependence, J. Nonlinear Sci. Appl., Volume 13 (2020), pp. 1-8
[12] Notes on some fractional calculus operators and their properties, J. Fract. Calc. Appl., Volume 5 (2014), pp. 1-10
[13] Integral Equations, John Wiley & Sons, New York, 1988 | Zbl
[14] New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI
[15] A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15
[16] Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006 | Zbl
[17] Introductory Functional Analysis with Applications, John Wiley & Sons, New York-London-Sydney, 1978 | Zbl
[18] Integral Equation Formulations and Related Numerical Solution Methods in Some Biomedical Applications of Electromagnetic Fields: Transcranial Magnetic Stimulation (TMS), Nerve Fiber Stimulation, Int. J. E-Health Medical Commun., Volume 9 (2018), pp. 65-84
[19] Variational Problems Involving a Caputo-Type Fractional Derivative, J. Optim. Theory Appl., Volume 174 (2017), pp. 276-294 | DOI | Zbl
[20] Globel properties of solutions of the functional differenatial equation $x(t)x'(t)=kx(x(t)),~ 0 <|k|< 1$, Funct. Differ. Equ., Volume 9 (2004), pp. 527-550
[21] Existence of solutions of stochastic fractional integrodifferential equations, Discontin. Nonlinearity Complex., Volume 7 (2018), pp. 55-65 | DOI | Zbl
[22] Fractional differential equations of Caputo Katugampola type and numerical solutions, Appl. Math. Comput., Volume 315 (2017), pp. 549-554 | Zbl | DOI
Cité par Sources :