Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 293-302.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the present article, we study the solvability of a class of fractional functional integro-differential equations of the Caputo-Katugampola type. The existence of solutions is investigated under sufficient conditions as well as the assumptions which guarantee the uniqueness of the solution is explained. Also, we examine the continuous dependence of the solution on the initial condition, the lag function $0 \leq \psi(t)\leq t$, and the considered nonlinear functional. We give an example to explain our results. The outcomes in this paper extend the results developed by El-Sayed et al. in [A. M. A. El-Sayed, R. G. Ahmed, J. Nonlinear Sci. Appl., $\bf 13$ (2020), 1--8], recently.
DOI : 10.22436/jnsa.013.05.06
Classification : 34A12, 45D99, 34K37
Keywords: Volterra functional equation, existence, uniqueness, fixed point principle, delay function

Youssef, M. I.  1

1 Department of Mathematics, College of Science, Jouf University, P. O. Box 2014, Sakaka, Saudi Arabia;Department of Mathematics, Faculty of Education, Alexandria University, Alexandria, Egypt
@article{JNSA_2020_13_5_a5,
     author = {Youssef, M. I. },
     title = {Caputo-Katugampola fractional {Volterra} functional differential equations with a vanishing lag function},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {293-302},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2020},
     doi = {10.22436/jnsa.013.05.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.06/}
}
TY  - JOUR
AU  - Youssef, M. I. 
TI  - Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 293
EP  - 302
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.06/
DO  - 10.22436/jnsa.013.05.06
LA  - en
ID  - JNSA_2020_13_5_a5
ER  - 
%0 Journal Article
%A Youssef, M. I. 
%T Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function
%J Journal of nonlinear sciences and its applications
%D 2020
%P 293-302
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.06/
%R 10.22436/jnsa.013.05.06
%G en
%F JNSA_2020_13_5_a5
Youssef, M. I. . Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 293-302. doi : 10.22436/jnsa.013.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.06/

[1] Almeida, R.; Malinowska, A. B.; Odzijewicz, T. Fractional Differential Equations With Dependence on the Caputo–Katugampola Derivative, J. Comput. Nonlinear Dynam., Volume 11 (2016), pp. 1-11 | DOI

[2] Atanacković, T. M.; Pilipović, S.; Stanković, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, Hoboken, 2014 | Zbl | DOI

[3] Bellen, A.; Zennaro, M. Numerical methods for delay differential equations. Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2003

[4] Buica, A. Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory (Babes-Bolyai Univ., Cluj-Napoca), Volume 3 (1995), pp. 1-14 | Zbl

[5] Daftardar-Gejji, V. Fractional Calculus and Fractional Differential Equations, Birkhäuser, Singapore, 2019 | DOI | Zbl

[6] Deng, J.; Wang, J. Existence and approximation of solutions of fractional order iterative differential equations, Central Eur. J. Phys., Volume 11 (2013), pp. 1377-1386 | DOI

[7] Eder, E. The functional differential equation $x'(t)=x(x(t))$, J. Differential Equations, Volume 54 (1984), pp. 390-400 | DOI

[8] Elborai, M. M.; Abdou, M. A.; Youssef, M. I. On the existence, uniqueness, and stability behavior of a random solution to a non local perturbed stochastic fractional integro-differential equation, Life Sci. J., Volume 10 (2013), pp. 3368-3376

[9] Elborai, M. M.; Abdou, M. A.; Youssef, M. I. On some nonlocal perturbed random fractional integro-differential equations, Life Sci. J., Volume 10 (2013), pp. 1601-1609

[10] Elborai, M. M.; Youssef, M. I. On stochastic solutions of nonlocal random functional integral equations, Arab J. Math. Sci., Volume 25 (2019), pp. 180-188 | DOI | Zbl

[11] El-Sayed, A. M. A.; Ahmed, R. G. Solvability of the functional integro-differential equation with self-reference and state-dependence, J. Nonlinear Sci. Appl., Volume 13 (2020), pp. 1-8

[12] Herzallah, M. A. E. Notes on some fractional calculus operators and their properties, J. Fract. Calc. Appl., Volume 5 (2014), pp. 1-10

[13] Hochstadt, H. Integral Equations, John Wiley & Sons, New York, 1988 | Zbl

[14] Katugampola, U. N. New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI

[15] Katugampola, U. N. A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15

[16] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam, 2006 | Zbl

[17] Kreyszig, E. Introductory Functional Analysis with Applications, John Wiley & Sons, New York-London-Sydney, 1978 | Zbl

[18] Poljak, D.; Cvetković, C. M.; Dorić, C. V.; Zulim, C. I.; Đogaš, C. Z.; Haueisen, C. J.; Drissi, K. E. Integral Equation Formulations and Related Numerical Solution Methods in Some Biomedical Applications of Electromagnetic Fields: Transcranial Magnetic Stimulation (TMS), Nerve Fiber Stimulation, Int. J. E-Health Medical Commun., Volume 9 (2018), pp. 65-84

[19] Ricardo, A. Variational Problems Involving a Caputo-Type Fractional Derivative, J. Optim. Theory Appl., Volume 174 (2017), pp. 276-294 | DOI | Zbl

[20] Stanek, S. Globel properties of solutions of the functional differenatial equation $x(t)x'(t)=kx(x(t)),~ 0 <|k|< 1$, Funct. Differ. Equ., Volume 9 (2004), pp. 527-550

[21] Umamaheswari, P.; Balachandran, K.; Annapoorani, N. Existence of solutions of stochastic fractional integrodifferential equations, Discontin. Nonlinearity Complex., Volume 7 (2018), pp. 55-65 | DOI | Zbl

[22] Zeng, S. D.; Baleanu, D.; Bai, Y. R.; Wu, G. C. Fractional differential equations of Caputo Katugampola type and numerical solutions, Appl. Math. Comput., Volume 315 (2017), pp. 549-554 | Zbl | DOI

Cité par Sources :