Voir la notice de l'article provenant de la source International Scientific Research Publications
Ali, Bashir  1 ; Ugwunnadi, G. C.  2 ; Lawan, M. S.  3
@article{JNSA_2020_13_5_a3, author = {Ali, Bashir and Ugwunnadi, G. C. and Lawan, M. S. }, title = {Split common fixed point problem for {Bregman} demigeneralized mappings in {Banach} spaces with applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {270-283}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, doi = {10.22436/jnsa.013.05.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.04/} }
TY - JOUR AU - Ali, Bashir AU - Ugwunnadi, G. C. AU - Lawan, M. S. TI - Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 270 EP - 283 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.04/ DO - 10.22436/jnsa.013.05.04 LA - en ID - JNSA_2020_13_5_a3 ER -
%0 Journal Article %A Ali, Bashir %A Ugwunnadi, G. C. %A Lawan, M. S. %T Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications %J Journal of nonlinear sciences and its applications %D 2020 %P 270-283 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.04/ %R 10.22436/jnsa.013.05.04 %G en %F JNSA_2020_13_5_a3
Ali, Bashir ; Ugwunnadi, G. C. ; Lawan, M. S. . Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 270-283. doi : 10.22436/jnsa.013.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.04/
[1] Inertial algorithm for solving fixed point and generalized mixed equilibrium problems in Banach spaces, PanAmer. Math. J., Volume 29 (2019), pp. 64-83
[2] Gradient of Convex Function, Trans. Amer. Math. Soc., Volume 139 (1969), pp. 443-467 | DOI
[3] Legendre Function and the Method of Bregman Projections, J. Convex Anal., Volume 4 (1997), pp. 27-67 | Zbl
[4] Essential Smoothness, Essential Strict Convexity, and Legendre functions in Banach Spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI
[5] Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000 | DOI
[6] The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., Volume 7 (1967), pp. 200-217 | DOI
[7] Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publ., Dordrecht, 2000 | Zbl
[8] Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl | DOI
[9] Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., Volume 13 (2012), pp. 759-775
[10] An Iterative row-action Method Interval Convex Programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | DOI | Zbl
[11] The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600 | Zbl
[12] Convex analysis and minimization algorithms. II. Advanced theory and bundle methods, Springer-Verlag, Berlin, 1993 | Zbl
[13] A strong convergence theorem by shrinking projection method for the split null point problem Banach spaces, Numer. Funct. Anal. Optim., Volume 37 (2016), pp. 541-553 | Zbl | DOI
[14] Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 505-523 | Zbl
[15] Approximation of common fixed points for finite families of Bregman quasi-total asymptotically nonexpansive mappings, J. Nigerian Math. Soc., Volume 35 (2016), pp. 282-302
[16] Right bregman nonexpansive operators in Banach space, Nonlinear Anal., Volume 75 (2012), pp. 5448-5465 | DOI
[17] Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-43 | Zbl | DOI
[18] A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 471-485 | Zbl
[19] Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI
[20] Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135 | Zbl | DOI
[21] Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-point algorithms for inverse problems in science and engineering, Volume 2011 (2011), pp. 301-316 | Zbl | DOI
[22] The split common fixed point problem and the hybrid method for demigeneralized mappings in two Banach spaces and application, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 29-45
[23] The split common null point problem for generalized resolvents in two Banach spaces, Numer. Algorithms, Volume 75 (2017), pp. 1065-1078 | Zbl | DOI
[24] Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., Volume 23 (2015), pp. 205-2011 | DOI | Zbl
[25] A strong convergence theorem for Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14 | DOI
[26] Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl., Volume 231 (2014), pp. 1-16 | DOI | Zbl
[27] Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River Edge, 2002 | Zbl
Cité par Sources :