Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 270-283.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the split common fixed point problem in reflexive Banach spaces, we obtain a strong convergence theorem for approximating a solution of the split common fixed point problem for Bregman demigeneralized mapping. Our result extend and improve important recent results announced by many authors.
DOI : 10.22436/jnsa.013.05.04
Classification : 47H09, 47J25
Keywords: Bregman distance, Bregman demigeneralized mappings, split common fixed point problem, fixed point, Banach spaces

Ali, Bashir  1 ; Ugwunnadi, G. C.  2 ; Lawan, M. S.  3

1 Department of Mathematical Sciences, Bayero University, Kano, Nigeria
2 Department of Mathematics , University of Eswatini, Private Bag 4, Kwaluseni, Eswatini
3 Department of Mathematics and Statistics, Kaduna Polytechnic, Kaduna, Nigeria
@article{JNSA_2020_13_5_a3,
     author = {Ali, Bashir  and Ugwunnadi, G. C.  and Lawan, M. S. },
     title = {Split common fixed point problem for {Bregman} demigeneralized mappings in {Banach} spaces with applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {270-283},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2020},
     doi = {10.22436/jnsa.013.05.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.04/}
}
TY  - JOUR
AU  - Ali, Bashir 
AU  - Ugwunnadi, G. C. 
AU  - Lawan, M. S. 
TI  - Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 270
EP  - 283
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.04/
DO  - 10.22436/jnsa.013.05.04
LA  - en
ID  - JNSA_2020_13_5_a3
ER  - 
%0 Journal Article
%A Ali, Bashir 
%A Ugwunnadi, G. C. 
%A Lawan, M. S. 
%T Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications
%J Journal of nonlinear sciences and its applications
%D 2020
%P 270-283
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.04/
%R 10.22436/jnsa.013.05.04
%G en
%F JNSA_2020_13_5_a3
Ali, Bashir ; Ugwunnadi, G. C. ; Lawan, M. S. . Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 270-283. doi : 10.22436/jnsa.013.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.04/

[1] Ali, B.; Ezeora, J. N.; Lawan, M. S. Inertial algorithm for solving fixed point and generalized mixed equilibrium problems in Banach spaces, PanAmer. Math. J., Volume 29 (2019), pp. 64-83

[2] Asplund, E.; Rockafellar, R. T. Gradient of Convex Function, Trans. Amer. Math. Soc., Volume 139 (1969), pp. 443-467 | DOI

[3] Bauschke, H. H.; Borwein, J. M. Legendre Function and the Method of Bregman Projections, J. Convex Anal., Volume 4 (1997), pp. 27-67 | Zbl

[4] Bauschke, H. H.; Combettes, P. L.; Borwein, J. M. Essential Smoothness, Essential Strict Convexity, and Legendre functions in Banach Spaces, Commun. Contemp. Math., Volume 3 (2001), pp. 615-647 | Zbl | DOI

[5] Bonnans, J. F.; Shapiro, A. Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000 | DOI

[6] Bregman, L. M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., Volume 7 (1967), pp. 200-217 | DOI

[7] Butnariu, D.; Iusem, A. N. Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publ., Dordrecht, 2000 | Zbl

[8] Butnariu, D.; Resmerita, E. Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., Volume 2006 (2006), pp. 1-39 | Zbl | DOI

[9] Byrne, C. L.; Censor, Y.; Gibali, A.; Reich, S. Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., Volume 13 (2012), pp. 759-775

[10] Censor, Y.; Lent, A. An Iterative row-action Method Interval Convex Programming, J. Optim. Theory Appl., Volume 34 (1981), pp. 321-353 | DOI | Zbl

[11] Censor, Y.; Segal, A. The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600 | Zbl

[12] Hiriart-Urruty, J.-B.; Lemaréchal, C. Convex analysis and minimization algorithms. II. Advanced theory and bundle methods, Springer-Verlag, Berlin, 1993 | Zbl

[13] Hojo, M.; Takahashi, W. A strong convergence theorem by shrinking projection method for the split null point problem Banach spaces, Numer. Funct. Anal. Optim., Volume 37 (2016), pp. 541-553 | Zbl | DOI

[14] Kohsaka, F.; Takahashi, W. Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 505-523 | Zbl

[15] Lawan, M. S.; Ali, B.; Harbau, M. H.; Ugwunnadi, G. C. Approximation of common fixed points for finite families of Bregman quasi-total asymptotically nonexpansive mappings, J. Nigerian Math. Soc., Volume 35 (2016), pp. 282-302

[16] Martin-Marquez, V.; Reich, S.; Sabach, S. Right bregman nonexpansive operators in Banach space, Nonlinear Anal., Volume 75 (2012), pp. 5448-5465 | DOI

[17] Naraghirad, E.; Yao, J. C. Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-43 | Zbl | DOI

[18] Reich, S.; Sabach, S. A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., Volume 10 (2009), pp. 471-485 | Zbl

[19] Reich, S.; Sabach, S. Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., Volume 31 (2010), pp. 22-44 | Zbl | DOI

[20] Reich, S.; Sabach, S. Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135 | Zbl | DOI

[21] Reich, S.; Sabach, S. Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-point algorithms for inverse problems in science and engineering, Volume 2011 (2011), pp. 301-316 | Zbl | DOI

[22] Takahashi, W. The split common fixed point problem and the hybrid method for demigeneralized mappings in two Banach spaces and application, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 29-45

[23] Takahashi, W. The split common null point problem for generalized resolvents in two Banach spaces, Numer. Algorithms, Volume 75 (2017), pp. 1065-1078 | Zbl | DOI

[24] Takahashi, W.; Xu, H.-K.; Yao, J.-C. Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., Volume 23 (2015), pp. 205-2011 | DOI | Zbl

[25] Tomizawa, Y. A strong convergence theorem for Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14 | DOI

[26] Ugwunnadi, G. C.; Ali, B.; Idris, I.; Minjibir, M. S. Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl., Volume 231 (2014), pp. 1-16 | DOI | Zbl

[27] Zalinescu, C. Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River Edge, 2002 | Zbl

Cité par Sources :