A new three-parameter exponential distribution with applications in reliability and engineering
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 258-269.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We introduce a new three-parameter model called the odd inverse Pareto exponential distribution which extends the exponential distribution and provides constant, decreasing, increasing, decreasing-increasing, upside-down bathtub and bathtub failure rate shapes. Some of its mathematical properties are derived. The maximum likelihood method is used to estimate the model parameters. The proposed model provides better fits over some existing distributions by means of two real data sets.
DOI : 10.22436/jnsa.013.05.03
Classification : 62E10, 60E05
Keywords: Exponential distribution, generating function, inverse Pareto-G family, maximum likelihood, order statistics

Aldahlan, Maha A. 1 ; Afify, Ahmed Z. 2

1 Department of Statistics, College of Science, University of Jeddah, Jeddah, Saudi Arabia
2 Department of Statistics, Mathematics and Insurance, Benha University, Egypt
@article{JNSA_2020_13_5_a2,
     author = {Aldahlan, Maha A. and Afify, Ahmed Z.},
     title = {A new three-parameter exponential distribution with applications in reliability and engineering},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {258-269},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2020},
     doi = {10.22436/jnsa.013.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.03/}
}
TY  - JOUR
AU  - Aldahlan, Maha A.
AU  - Afify, Ahmed Z.
TI  - A new three-parameter exponential distribution with applications in reliability and engineering
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 258
EP  - 269
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.03/
DO  - 10.22436/jnsa.013.05.03
LA  - en
ID  - JNSA_2020_13_5_a2
ER  - 
%0 Journal Article
%A Aldahlan, Maha A.
%A Afify, Ahmed Z.
%T A new three-parameter exponential distribution with applications in reliability and engineering
%J Journal of nonlinear sciences and its applications
%D 2020
%P 258-269
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.03/
%R 10.22436/jnsa.013.05.03
%G en
%F JNSA_2020_13_5_a2
Aldahlan, Maha A.; Afify, Ahmed Z. A new three-parameter exponential distribution with applications in reliability and engineering. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 258-269. doi : 10.22436/jnsa.013.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.03/

[1] Afify, A. Z.; Altun, E.; Alizadeh, M.; Ozel, G.; Hamedani, G. G. The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., Volume 8 (2017), pp. 65-91 | Zbl

[2] Afify, A. Z.; Cordeiro, G. M.; Butt, N. S.; Ortega, E. M. M.; Suzuki, A. K. A new lifetime model with variable shapes for the hazard rate, Braz. J. Probab. Stat., Volume 31 (2017), pp. 516-541 | Zbl | DOI

[3] Afify, A. Z.; Cordeiro, G. M.; Yousof, H. M.; Alzaatreh, A.; Nofal, Z. M. The Kumaraswamy transmuted-G family of distributions: properties and applications, J. Data Sci., Volume 14 (2016), pp. 245-270

[4] Afify, A. Z.; Mohamed, O. A. A new three-parameter exponential distribution with variable shapes for the hazard rate: estimation and applications, Mathematics, Volume 8 (2020), pp. 1-17 | DOI

[5] Afify, A. Z.; Zayed, M.; Ahsanullah, M. The extended exponential distribution and its applications, J. Stat. Theory Appl., Volume 17 (2018), pp. 213-229

[6] Aldahlan, M. A.; Afify, A. Z.; Ahmed, A. N. The odd inverse Pareto-G class: properties and applications, J. Nonlinear Sci. Appl., Volume 12 (2019), pp. 278-290

[7] Gupta, R. C.; Gupta, P. L.; Gupta, R. D. Modeling failure time data by Lehmann alternatives, Comm. Statist. Theory Methods, Volume 27 (1998), pp. 887-904 | DOI

[8] Gupta, R. D.; Kundu, D. Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biom. J., Volume 43 (2001), pp. 117-130 | DOI | Zbl

[9] Jones, M. C. Families of distributions arising from distributions of order statistics, Test, Volume 13 (2004), pp. 1-43 | Zbl | DOI

[10] Khan, M. S.; King, R.; Hudson, I. L. Transmuted generalized exponential distribution: a generalization of the exponential distribution with applications to survival data, Comm. Statist. Simulation Comput., Volume 46 (2017), pp. 4377-4398 | Zbl | DOI

[11] Kundu, D.; Raqab, M. Estimation of $R=P(Y<X)$ for three parameter Weibull distribution, Stat. Probab. Lett., Volume 79 (2009), pp. 1839-1846 | Zbl | DOI

[12] Lan, Y. G.; Leemis, L. M. The logistic-exponential survival distribution, Nav. Res. Logist., Volume 55 (2008), pp. 252-264 | DOI | Zbl

[13] Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 6543-6557 | DOI | Zbl

[14] Mansoor, M.; Tahir, M. H.; Cordeiro, G. M.; Provost, S. B.; Alzaatreh, A. The Marshall-Olkin logistic exponential distribution, Comm. Statist. Theory Methods, Volume 48 (2019), pp. 220-234 | DOI

[15] Marshall, A. W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, Volume 84 (1997), pp. 641-652 | DOI | Zbl

[16] Nadarajah, S.; Haghighi, F. An extension of the exponential distribution, Statistics, Volume 45 (2011), pp. 543-558 | DOI | Zbl

[17] Nassar, M.; Afify, A. Z.; Dey, S.; Kumar, D. A new extension of Weibull distribution: properties and different methods of estimation, J. Comput. Appl. Math., Volume 336 (2018), pp. 439-457 | Zbl | DOI

[18] Rasekhi, M.; Alizadeh, M.; Altun, E.; Hamedani, G. G.; Afify, A. Z.; Ahmad, M. The modified exponential distribution with applications, Pakistan J. Statist., Volume 33 (2017), pp. 383-398

[19] Xu, K.; Xie, M.; Tang, L. C.; Ho, S. L. Application of neural networks in forecasting engine systems reliability, Appl. Soft Compu., Volume 2 (2003), pp. 255-268 | DOI

Cité par Sources :