Voir la notice de l'article provenant de la source International Scientific Research Publications
Asfaw, Teffera M.  1
@article{JNSA_2020_13_5_a1, author = {Asfaw, Teffera M. }, title = {Topological degree theories for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {239-257}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, doi = {10.22436/jnsa.013.05.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.02/} }
TY - JOUR AU - Asfaw, Teffera M. TI - Topological degree theories for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 239 EP - 257 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.02/ DO - 10.22436/jnsa.013.05.02 LA - en ID - JNSA_2020_13_5_a1 ER -
%0 Journal Article %A Asfaw, Teffera M. %T Topological degree theories for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications %J Journal of nonlinear sciences and its applications %D 2020 %P 239-257 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.02/ %R 10.22436/jnsa.013.05.02 %G en %F JNSA_2020_13_5_a1
Asfaw, Teffera M. . Topological degree theories for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 239-257. doi : 10.22436/jnsa.013.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.02/
[1] Strongly quasibounded maximal monotone perturbations for the Berkovits-Mustonen topological degree theory, J. Math. Anal. Appl., Volume 348 (2008), pp. 122-136 | DOI | Zbl
[2] New variational inequality and surjectivity theories for perturbed noncoercive operators and application to nonlinear problems, Adv. Math. Sci. Appl., Volume 24 (2014), pp. 611-668 | Zbl
[3] A new topological degree theory for pseudomonotone perturbations of the sum of two maximal monotone operators and applications, J. Math. Anal. Appl., Volume 434 (2016), pp. 967-1006 | DOI | Zbl
[4] A new topological degree theory for perturbations of demicontinuous operators and applications to nonlinear equations with nonmonotone nonlinearities, J. Funct. Spaces, Volume 2016 (2016), pp. 1-15 | DOI | Zbl
[5] A degree theory for compact perturbations of monotone type operators in reflexive Banach spaces, Abstr. Appl. Anal., Volume 2017 (2017), pp. 1-13 | DOI | Zbl
[6] A variational inequality theory for constrained problems in reflexive Banach spaces, Adv. Oper. Theory, Volume 4 (2019), pp. 462-480 | DOI | Zbl
[7] A Browder topological degree theory for multivalued pseudomonotone perturbations of maximal monotone operators in reflexive Banach spaces, Adv. Math. Sci. Appl., Volume 22 (2012), pp. 91-148
[8] Variational inequalities for perturbations of maximal monotone operators in reflexive Banach spaces, Tohoku Math. J. (2), Volume 66 (2014), pp. 171-203 | Zbl | DOI
[9] Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010 | Zbl | DOI
[10] On the topological degree for mappings of monotone type, Nonlinear Anal., Volume 10 (1986), pp. 1373-1383 | DOI | Zbl
[11] Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math., Volume 23 (1970), pp. 123-144 | DOI
[12] Über Abbildung von Mannigfaltigkeiten, Math. Ann., Volume 71 (1912), pp. 97-115 | DOI | Zbl
[13] Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., Volume 18 (1976), pp. 1-308 | Zbl
[14] Degree of mapping for nonlinear mappings of monotone type, Proc. Nat. Acad. Sci., Volume 80 (1983), pp. 1771-1773 | Zbl | DOI
[15] Degree of mapping for nonlinear mappings of monotone type; Strongly nonlinear mapping, Proc. Nat. Acad. Sci. U.S.A., Volume 80 (1983), pp. 2408-2409 | DOI
[16] Degree of mapping for nonlinear mappings of monotone type: densely defined mapping, Proc. Nat. Acad. Sci. U.S.A., Volume 80 (1983), pp. 2405-2407 | Zbl | DOI
[17] Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal., Volume 11 (1972), pp. 251-294 | Zbl | DOI
[18] Generalization of Browder's degree theory, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 233-259 | DOI
[19] Topological degree theories for densely defined mappings involving operators of type $(S_+)$, Adv. Differential Equations, Volume 4 (1999), pp. 413-456 | Zbl
[20] Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations, Hiroshima Math. J., Volume 4 (1974), pp. 229-263 | Zbl
[21] Monotonicity and compactness methods for nonlinear variational inequalities, in: Handbook of differential equations: stationary partial differential equations, Volume 2007 (2007), pp. 203-298 | Zbl
[22] Topological degree for $({\rm S})\sb +$-mappings with maximal monotone perturbations and its applications to variational inequalities, Nonlinear Anal., Volume 59 (2004), pp. 147-172 | Zbl | DOI
[23] On pseudomonotone operators and nonlinear noncoercive variational problems on unbounded domain, Math. Ann., Volume 248 (1980), pp. 241-246 | Zbl | DOI
[24] A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proc. Amer. Math. Soc., Volume 139 (2011), pp. 1645-1658 | Zbl | DOI
[25] Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3), Volume 51 (1934), pp. 45-78 | DOI | Zbl
[26] Degree Theory, Cambridge University Press, New York, 1978 | Zbl
[27] Leray-Schauder degree: a half a century of extensions and applications, Topol. Methods Nonlinear Anal., Volume 14 (1999), pp. 195-228 | Zbl | DOI
[28] Degree of mapping in convex linear topological spaces, Amer. J. Math., Volume 73 (1951), pp. 497-511 | DOI | Zbl
[29] Topological Degree Theory and Applications, Chapman and Hall/CRC, Boca Raton, 2006 | Zbl
[30] Nonlinear Mappings of Monotone Type, Sijthoff & Noordhoff International Publishers, Bucharest, 1978 | Zbl
[31] On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 75-88 | DOI | Zbl
[32] Monotone operators in Banach space and nonlinear partial differential equations, Amer. Math. Soc., Providence, 1997 | Zbl
[33] Compactness methods for nonlinear evolutions, Longman Scientific & Technical, Harlow, 1995 | Zbl
[34] Nonlinear Functional Analysis and Its Applications, Springer-Verlag, New York, 1990 | Zbl
Cité par Sources :