Topological degree theories for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 239-257.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $X$ be a real locally uniformly convex reflexive Banach space. Let $T: X\supseteq D(T)\to 2^{X^*}$ and $A:X\supseteq D(A)\to 2^{X^*}$ be maximal monotone operators such that $T$ is of compact resolvents and $A$ is strongly quasibounded, and $C: X\supseteq D(C)\to X^*$ be a bounded and continuous operator with $D(A)\subseteq D(C)$ or $D(C)=\overline{U}$. The set $U$ is a nonempty and open (possibly unbounded) subset of $X$. New degree mappings are constructed for operators of the type $T+A+C$. The operator $C$ is neither pseudomonotone type nor defined everywhere. The theory for the case $D(C)=\overline{U}$ presents a new degree mapping for possibly unbounded $U$ and both of these theories are new even when $A$ is identically zero. New existence theorems are derived. The existence theorems are applied to prove the existence of a solution for a nonlinear variational inequality problem.
DOI : 10.22436/jnsa.013.05.02
Classification : 47H11, 47H14, 47H07
Keywords: Compact resolvents, continuous operator, degree theory, variational inequality, homotopy invariance, maximal monotone

Asfaw, Teffera M.  1

1 Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
@article{JNSA_2020_13_5_a1,
     author = {Asfaw, Teffera M. },
     title = {Topological degree theories  for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {239-257},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2020},
     doi = {10.22436/jnsa.013.05.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.02/}
}
TY  - JOUR
AU  - Asfaw, Teffera M. 
TI  - Topological degree theories  for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 239
EP  - 257
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.02/
DO  - 10.22436/jnsa.013.05.02
LA  - en
ID  - JNSA_2020_13_5_a1
ER  - 
%0 Journal Article
%A Asfaw, Teffera M. 
%T Topological degree theories  for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications
%J Journal of nonlinear sciences and its applications
%D 2020
%P 239-257
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.02/
%R 10.22436/jnsa.013.05.02
%G en
%F JNSA_2020_13_5_a1
Asfaw, Teffera M. . Topological degree theories  for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 5, p. 239-257. doi : 10.22436/jnsa.013.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.05.02/

[1] Adhikari, D. R.; Kartsatos, A. G. Strongly quasibounded maximal monotone perturbations for the Berkovits-Mustonen topological degree theory, J. Math. Anal. Appl., Volume 348 (2008), pp. 122-136 | DOI | Zbl

[2] Asfaw, T. M. New variational inequality and surjectivity theories for perturbed noncoercive operators and application to nonlinear problems, Adv. Math. Sci. Appl., Volume 24 (2014), pp. 611-668 | Zbl

[3] Asfaw, T. M. A new topological degree theory for pseudomonotone perturbations of the sum of two maximal monotone operators and applications, J. Math. Anal. Appl., Volume 434 (2016), pp. 967-1006 | DOI | Zbl

[4] Asfaw, T. M. A new topological degree theory for perturbations of demicontinuous operators and applications to nonlinear equations with nonmonotone nonlinearities, J. Funct. Spaces, Volume 2016 (2016), pp. 1-15 | DOI | Zbl

[5] Asfaw, T. M. A degree theory for compact perturbations of monotone type operators in reflexive Banach spaces, Abstr. Appl. Anal., Volume 2017 (2017), pp. 1-13 | DOI | Zbl

[6] Asfaw, T. M. A variational inequality theory for constrained problems in reflexive Banach spaces, Adv. Oper. Theory, Volume 4 (2019), pp. 462-480 | DOI | Zbl

[7] Asfaw, T. M.; Kartsatos, A. G. A Browder topological degree theory for multivalued pseudomonotone perturbations of maximal monotone operators in reflexive Banach spaces, Adv. Math. Sci. Appl., Volume 22 (2012), pp. 91-148

[8] Asfaw, T. M.; Kartsatos, A. G. Variational inequalities for perturbations of maximal monotone operators in reflexive Banach spaces, Tohoku Math. J. (2), Volume 66 (2014), pp. 171-203 | Zbl | DOI

[9] Barbu, V. Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010 | Zbl | DOI

[10] Berkovits, J.; Mustonen, V. On the topological degree for mappings of monotone type, Nonlinear Anal., Volume 10 (1986), pp. 1373-1383 | DOI | Zbl

[11] Brezis, H.; Crandall, M. G.; Pazy, A. Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math., Volume 23 (1970), pp. 123-144 | DOI

[12] Brouwer, L. E. J. Über Abbildung von Mannigfaltigkeiten, Math. Ann., Volume 71 (1912), pp. 97-115 | DOI | Zbl

[13] Browder, F. E. Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., Volume 18 (1976), pp. 1-308 | Zbl

[14] Browder, F. E. Degree of mapping for nonlinear mappings of monotone type, Proc. Nat. Acad. Sci., Volume 80 (1983), pp. 1771-1773 | Zbl | DOI

[15] Browder, F. E. Degree of mapping for nonlinear mappings of monotone type; Strongly nonlinear mapping, Proc. Nat. Acad. Sci. U.S.A., Volume 80 (1983), pp. 2408-2409 | DOI

[16] Browder, F. E. Degree of mapping for nonlinear mappings of monotone type: densely defined mapping, Proc. Nat. Acad. Sci. U.S.A., Volume 80 (1983), pp. 2405-2407 | Zbl | DOI

[17] Browder, F. E.; Hess, P. Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal., Volume 11 (1972), pp. 251-294 | Zbl | DOI

[18] Hu, S. C.; Papageorgiou, N. S. Generalization of Browder's degree theory, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 233-259 | DOI

[19] Kartsatos, A. G.; Skrypnik, I. V. Topological degree theories for densely defined mappings involving operators of type $(S_+)$, Adv. Differential Equations, Volume 4 (1999), pp. 413-456 | Zbl

[20] Kenmochi, N. Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations, Hiroshima Math. J., Volume 4 (1974), pp. 229-263 | Zbl

[21] Kenmochi, N. Monotonicity and compactness methods for nonlinear variational inequalities, in: Handbook of differential equations: stationary partial differential equations, Volume 2007 (2007), pp. 203-298 | Zbl

[22] Kobayashi, J.; Otani, M. Topological degree for $({\rm S})\sb +$-mappings with maximal monotone perturbations and its applications to variational inequalities, Nonlinear Anal., Volume 59 (2004), pp. 147-172 | Zbl | DOI

[23] Landes, R.; Mustonen, V. On pseudomonotone operators and nonlinear noncoercive variational problems on unbounded domain, Math. Ann., Volume 248 (1980), pp. 241-246 | Zbl | DOI

[24] Le, V. K. A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proc. Amer. Math. Soc., Volume 139 (2011), pp. 1645-1658 | Zbl | DOI

[25] Leray, J.; Schauder, J. Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3), Volume 51 (1934), pp. 45-78 | DOI | Zbl

[26] Lloyd, N. G. Degree Theory, Cambridge University Press, New York, 1978 | Zbl

[27] Mawhin, J. Leray-Schauder degree: a half a century of extensions and applications, Topol. Methods Nonlinear Anal., Volume 14 (1999), pp. 195-228 | Zbl | DOI

[28] Nagumo, M. Degree of mapping in convex linear topological spaces, Amer. J. Math., Volume 73 (1951), pp. 497-511 | DOI | Zbl

[29] O'Regan, D.; Cho, Y. J.; Chen, Y.-Q. Topological Degree Theory and Applications, Chapman and Hall/CRC, Boca Raton, 2006 | Zbl

[30] Pascali, D.; Sburlan, S. Nonlinear Mappings of Monotone Type, Sijthoff & Noordhoff International Publishers, Bucharest, 1978 | Zbl

[31] Rockafellar, R. T. On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 75-88 | DOI | Zbl

[32] Showalter, R. E. Monotone operators in Banach space and nonlinear partial differential equations, Amer. Math. Soc., Providence, 1997 | Zbl

[33] Vrabie, I. I. Compactness methods for nonlinear evolutions, Longman Scientific & Technical, Harlow, 1995 | Zbl

[34] Zeidler, E. Nonlinear Functional Analysis and Its Applications, Springer-Verlag, New York, 1990 | Zbl

Cité par Sources :