Voir la notice de l'article provenant de la source International Scientific Research Publications
Antal, Swati 1 ; Gairola, U. C.  1
@article{JNSA_2020_13_4_a5, author = {Antal, Swati and Gairola, U. C. }, title = {Generalized {Suzuki} type \( \alpha \)-\( {\mathcal{Z}} \)-contraction in b-metric space}, journal = {Journal of nonlinear sciences and its applications}, pages = {212-222}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2020}, doi = {10.22436/jnsa.013.04.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.06/} }
TY - JOUR AU - Antal, Swati AU - Gairola, U. C. TI - Generalized Suzuki type \( \alpha \)-\( \mathcal{Z} \)-contraction in b-metric space JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 212 EP - 222 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.06/ DO - 10.22436/jnsa.013.04.06 LA - en ID - JNSA_2020_13_4_a5 ER -
%0 Journal Article %A Antal, Swati %A Gairola, U. C. %T Generalized Suzuki type \( \alpha \)-\( \mathcal{Z} \)-contraction in b-metric space %J Journal of nonlinear sciences and its applications %D 2020 %P 212-222 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.06/ %R 10.22436/jnsa.013.04.06 %G en %F JNSA_2020_13_4_a5
Antal, Swati; Gairola, U. C. . Generalized Suzuki type \( \alpha \)-\( \mathcal{Z} \)-contraction in b-metric space. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 212-222. doi : 10.22436/jnsa.013.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.06/
[1] On fixed point results for $\alpha$-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 40-56 | DOI | Zbl
[2] Fixed point in $b$-metric space via simulation function, Novi Sad J. Math., Volume 47 (2017), pp. 133-147
[3] Strict fixed point theorems for multivalued operators in $b$-metric space, Int. J. Mod. Math., Volume 4 (2009), pp. 285-301
[4] Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[5] Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276 | Zbl
[6] Fixed point results on $b$-metric space via Picard sequences and $b$-simulation functions, Iran. J. Math. Sci. Inform., Volume 11 (2016), pp. 123-136 | DOI | Zbl
[7] On $\alpha$-$\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-12 | Zbl | DOI
[8] A new approach to the study of fixed point theory for simulation functions, Filomat, Volume 29 (2015), pp. 1189-1194 | Zbl
[9] A new fixed point theorem under Suzuki type $Z$-contraction mappings, J. Math. Anal., Volume 8 (2017), pp. 113-119
[10] Some results on fixed points of $\alpha$-$\psi$-Ciric generalized multifunctions, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | DOI
[11] Sequences of almost contractions and fixed points in $b$-metric spaces, An. Univ. Vest Timiş. Ser. Mat.-Inform., Volume 48 (2010), pp. 125-137
[12] Generalized Suzuki type $\mathcal{Z}$-contraction in complete metric spaces, Kragujevac J. Math., Volume 42 (2018), pp. 419-430
[13] Common fixed point theorems for weakly isotone increasing mappings in ordered $b$-metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 229-245 | DOI | Zbl
[14] Common fixed points of almost generalized $(\psi, \phi){s}$-contractive mappings in ordered $b$-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-23 | DOI
[15] Fixed point theorem for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI
Cité par Sources :