Voir la notice de l'article provenant de la source International Scientific Research Publications
Nyein, Ei Ei  1 ; Zaw, Aung Khaing  2
@article{JNSA_2020_13_4_a4, author = {Nyein, Ei Ei and Zaw, Aung Khaing }, title = {A fixed point method to solve differential equation and {Fredholm} integral equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {205-211}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2020}, doi = {10.22436/jnsa.013.04.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.05/} }
TY - JOUR AU - Nyein, Ei Ei AU - Zaw, Aung Khaing TI - A fixed point method to solve differential equation and Fredholm integral equation JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 205 EP - 211 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.05/ DO - 10.22436/jnsa.013.04.05 LA - en ID - JNSA_2020_13_4_a4 ER -
%0 Journal Article %A Nyein, Ei Ei %A Zaw, Aung Khaing %T A fixed point method to solve differential equation and Fredholm integral equation %J Journal of nonlinear sciences and its applications %D 2020 %P 205-211 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.05/ %R 10.22436/jnsa.013.04.05 %G en %F JNSA_2020_13_4_a4
Nyein, Ei Ei ; Zaw, Aung Khaing . A fixed point method to solve differential equation and Fredholm integral equation. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 205-211. doi : 10.22436/jnsa.013.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.05/
[1] Sobolev Spaces, Academic Press, New York-London, 1975 | Zbl
[2] Metric fixed point theory for nonexpansive mappings defined on unbounded sets, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-12 | Zbl | DOI
[3] The Solvability of Nonlinear Functional Equations, Duke Math. J., Volume 30 (1963), pp. 557-566
[4] Iteration Methods for Approximation of Solutions of Nonlinear Equations in Banach Spaces, Ph.D. Thesis (Auburn University), Ann Arbor, 2008
[5] A Course in Functional Analysis, Springer-Verlag, New York, 1990 | Zbl | DOI
[6] Solvability of Some Nonlinear Integral Functional Equations, Amer. J. Theor. Appl. Stat., Volume 6 (2017), pp. 13-22
[7] An Application of Fixed Point Theory to a Nonlinear Differential Equation, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7 | DOI | Zbl
[8] Unbounded linear operators, McGraw-Hill Book Co., New York, 1966 | Zbl
[9] Solvability of Nonlinear Quadratic Functional Equations, J. Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2715-2720
[10] A Generalized System of Nonlinear Variational Inequalities in Banach Spaces, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-10 | DOI | Zbl
[11] Solution of Differential and Integral Equations Using Fixed Point Theory, Int. J. Adv. Res. Comput. Eng. Tech. (IJARCET), Volume 3 (2014), pp. 1-4
[12] Fixed point theory for nonlinear mappings in Banach spaces and applications, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-16 | DOI | Zbl
[13] The Method of Inverse Differential Operators Applied for the Solution of PDEs, in: Differential Equations, Dynamical Systems and Celestial Mechanics, Volume 2011 (2011), pp. 79-95
Cité par Sources :