A fixed point method to solve differential equation and Fredholm integral equation
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 205-211.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this research is to explore a fixed point method to solve a class of functional equations, $Tu=f$, where $T$ is a differential or an integral operator on a Sobolev space $H^2(\Omega)$, where $\Omega$ is an open set in $\mathbb{R}^n$. First, $T$ is converted into a sum of $I+\lambda A$ with $\lambda>0$, where $A$ is a continuous linear operator and $I$ is identity mapping. Then it is shown that $T$ is a contraction on the prescribed Sobolev space and norm of $A$ is estimated on the prescribed Sobolev space. By means of the theory of inverse operator of $I+\lambda A$ and by choosing the appropriate value of $\lambda$, the solution $u$ of differential or integral operator is obtained. Some practical problems concerning the linear differential equation and Fredholm integral equation are solved by virtue of the fixed point method.
DOI : 10.22436/jnsa.013.04.05
Classification : 47H10, 45B05
Keywords: Fixed point method, ODE and PDE, Fredholm integral equation, estimation

Nyein, Ei Ei  1 ; Zaw, Aung Khaing  2

1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
2 School of Mathematics and Statistics, Beijing Institute of Technology, , Beijing 100081, China
@article{JNSA_2020_13_4_a4,
     author = {Nyein, Ei Ei  and Zaw, Aung Khaing },
     title = {A fixed point method to solve differential equation and {Fredholm} integral equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {205-211},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2020},
     doi = {10.22436/jnsa.013.04.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.05/}
}
TY  - JOUR
AU  - Nyein, Ei Ei 
AU  - Zaw, Aung Khaing 
TI  - A fixed point method to solve differential equation and Fredholm integral equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 205
EP  - 211
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.05/
DO  - 10.22436/jnsa.013.04.05
LA  - en
ID  - JNSA_2020_13_4_a4
ER  - 
%0 Journal Article
%A Nyein, Ei Ei 
%A Zaw, Aung Khaing 
%T A fixed point method to solve differential equation and Fredholm integral equation
%J Journal of nonlinear sciences and its applications
%D 2020
%P 205-211
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.05/
%R 10.22436/jnsa.013.04.05
%G en
%F JNSA_2020_13_4_a4
Nyein, Ei Ei ; Zaw, Aung Khaing . A fixed point method to solve differential equation and Fredholm integral equation. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 205-211. doi : 10.22436/jnsa.013.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.05/

[1] Adam, R. A. Sobolev Spaces, Academic Press, New York-London, 1975 | Zbl

[2] Alghamdi1, M. A.; Kirk, W. A.; Shahzad, N. Metric fixed point theory for nonexpansive mappings defined on unbounded sets, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-12 | Zbl | DOI

[3] Browder, F. E. The Solvability of Nonlinear Functional Equations, Duke Math. J., Volume 30 (1963), pp. 557-566

[4] Chidume, C. Iteration Methods for Approximation of Solutions of Nonlinear Equations in Banach Spaces, Ph.D. Thesis (Auburn University), Ann Arbor, 2008

[5] Conway, J. B. A Course in Functional Analysis, Springer-Verlag, New York, 1990 | Zbl | DOI

[6] El-Borai, M. M.; El-Sayed, W. G.; Khalefa, N. N. Solvability of Some Nonlinear Integral Functional Equations, Amer. J. Theor. Appl. Stat., Volume 6 (2017), pp. 13-22

[7] Farajzadeh, A. P.; Kaewcharoen, A.; Plubtieng, S. An Application of Fixed Point Theory to a Nonlinear Differential Equation, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7 | DOI | Zbl

[8] Goldberg, S. Unbounded linear operators, McGraw-Hill Book Co., New York, 1966 | Zbl

[9] Hashem, H. H. G.; El-Sayed, A. M. A. Solvability of Nonlinear Quadratic Functional Equations, J. Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2715-2720

[10] Junlouchai, P.; Kaewcharoen, A.; Plubtieng, S. A Generalized System of Nonlinear Variational Inequalities in Banach Spaces, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-10 | DOI | Zbl

[11] Kakde, R. V.; Biradar, S. S.; Hiremath, S. S. Solution of Differential and Integral Equations Using Fixed Point Theory, Int. J. Adv. Res. Comput. Eng. Tech. (IJARCET), Volume 3 (2014), pp. 1-4

[12] Kangtunyakarn, A. Fixed point theory for nonlinear mappings in Banach spaces and applications, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-16 | DOI | Zbl

[13] Kragler, R. The Method of Inverse Differential Operators Applied for the Solution of PDEs, in: Differential Equations, Dynamical Systems and Celestial Mechanics, Volume 2011 (2011), pp. 79-95

Cité par Sources :