Some fixed point theorems in fuzzy bipolar metric spaces
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 196-204.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the notion of fuzzy bipolar metric space and prove some fixed point results in this space. We provide some non-trivial examples to support our claim and also give applications for the usability of the main result in fuzzy bipolar metric spaces.
DOI : 10.22436/jnsa.013.04.04
Classification : 54H25, 47H10
Keywords: Fuzzy metric spaces, fuzzy bipolar metric space, fixed point

Bartwal, Ayush  1 ; Dimri, R. C.  1 ; Prasad, Gopi  1

1 Department of Mathematics, HNB Garhwal University, Uttarakhand, India
@article{JNSA_2020_13_4_a3,
     author = {Bartwal, Ayush  and Dimri, R. C.  and Prasad, Gopi },
     title = {Some fixed point theorems in fuzzy bipolar metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {196-204},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2020},
     doi = {10.22436/jnsa.013.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.04/}
}
TY  - JOUR
AU  - Bartwal, Ayush 
AU  - Dimri, R. C. 
AU  - Prasad, Gopi 
TI  - Some fixed point theorems in fuzzy bipolar metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 196
EP  - 204
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.04/
DO  - 10.22436/jnsa.013.04.04
LA  - en
ID  - JNSA_2020_13_4_a3
ER  - 
%0 Journal Article
%A Bartwal, Ayush 
%A Dimri, R. C. 
%A Prasad, Gopi 
%T Some fixed point theorems in fuzzy bipolar metric spaces
%J Journal of nonlinear sciences and its applications
%D 2020
%P 196-204
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.04/
%R 10.22436/jnsa.013.04.04
%G en
%F JNSA_2020_13_4_a3
Bartwal, Ayush ; Dimri, R. C. ; Prasad, Gopi . Some fixed point theorems in fuzzy bipolar metric spaces. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 196-204. doi : 10.22436/jnsa.013.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.04/

[1] George, A.; Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399 | DOI | Zbl

[2] Grabiec, M. Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 27 (1988), pp. 385-389 | Zbl | DOI

[3] Gregori, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 125 (2002), pp. 245-252 | Zbl | DOI

[4] Gupta, V.; Mani, N.; Saini, A. Fixed point theorems and its applications in fuzzy metric spaces, Conference Paper, Volume 2013 (2013), pp. 1-11

[5] Kishore, G. N. V.; Agarwal, R. P.; Rao, B. Srinuvasa; Rao, R. V. N. Srinuvasa Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl., Volume 2018 (2018), pp. 1-13 | Zbl | DOI

[6] Kramosil, I.; Michalek, J. Fuzzy metric and statistical metric spaces, Kybernetica, Volume 11 (1975), pp. 326-334 | EuDML | Zbl

[7] Mihet, D. A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 144 (2004), pp. 431-439 | DOI | Zbl

[8] Mishra, S. N.; Sharma, N.; Singh, S. L. Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. Math. Sci., Volume 17 (1994), pp. 253-258 | DOI | Zbl

[9] Mutlu, A.; Gürdal, U. Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 5362-5373 | DOI | Zbl

[10] Mutlu, A.; Özkan, K.; Gürdal, U. Coupled fixed point theorems on bipolar metric spaces, Eur. J. Pure Appl. Math., Volume 10 (2017), pp. 655-667 | Zbl

[11] Mutlu, A.; Özkan, K.; Gürdal, U. Fixed point theorems for multivalued mapping on bipolar metric spaces, Fixed Point Theory

[12] Mutlu, A.; Özkan, K.; Gürdal, U. Locally and weakly contractive principle in bipolar metric spaces, TWMS J. App. Eng. Math.

[13] Schweizer, B.; Sklar, A. Statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 313-334 | DOI | Zbl

[14] Zadeh, L. A. Fuzzy sets, Inf. Control, Volume 8 (1965), pp. 338-353 | Zbl | DOI

Cité par Sources :