Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 180-186.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, we establish the existence of solutions for a functional integral equation of fractional order. The study upholds the case when the set-valued function has $L^1$-Caratheodory selections, we reformulate the functional integral inclusion according to these selections via a classical fixed point theorem of Schauder and present theorem for the existence of integrable solutions. As an application, the existence of solutions of nonlinear functional integro-differential inclusion with an initial value, and the initial value problem for the arbitrary-order differential inclusion will be studied.
DOI : 10.22436/jnsa.013.04.02
Classification : 26A33, 47H30, 47G10
Keywords: Fractional calculus, integro-differential inclusion, \(L^1\)-Caratheodory selections, Schauder fixed point principle, Kolmogorov compactness criterion

El-Sayed, A. M. A.  1 ; Al-Issa, Sh. M.  2

1 Faculty of Science, Alexandria University, Alexandria, Egypt
2 Faculty of Science, Lebanes International University, Beirut, Lebanon;Faculty of Science, The International University of Beirut, Saida, Lebanon
@article{JNSA_2020_13_4_a1,
     author = {El-Sayed, A. M. A.   and Al-Issa, Sh. M. },
     title = {Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {180-186},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2020},
     doi = {10.22436/jnsa.013.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.02/}
}
TY  - JOUR
AU  - El-Sayed, A. M. A.  
AU  - Al-Issa, Sh. M. 
TI  - Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 180
EP  - 186
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.02/
DO  - 10.22436/jnsa.013.04.02
LA  - en
ID  - JNSA_2020_13_4_a1
ER  - 
%0 Journal Article
%A El-Sayed, A. M. A.  
%A Al-Issa, Sh. M. 
%T Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach
%J Journal of nonlinear sciences and its applications
%D 2020
%P 180-186
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.02/
%R 10.22436/jnsa.013.04.02
%G en
%F JNSA_2020_13_4_a1
El-Sayed, A. M. A.  ; Al-Issa, Sh. M. . Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 180-186. doi : 10.22436/jnsa.013.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.02/

[1] Al-Issa, S.; El-Sayed, A. M. A. Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Comment. Math., Volume 49 (2009), pp. 171-177 | Zbl

[2] Cellina, J.-P. Aubin A. Differential Inclusion, Springer-Verlag, Berlin, 1984 | DOI

[3] Banaś, J. On the superposition operator and integrable solutions of some functional equations, Nonlinear Anal., Volume 12 (1988), pp. 777-784 | Zbl | DOI

[4] Banaś, J. Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc. Ser. A, Volume 46 (1989), pp. 61-68 | DOI | Zbl

[5] Browder, F. E.; Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228

[6] Cellina, A.; Solimini, S. Continuous extensions of selections, Bull. Polish Acad. Sci. Math., Volume 35 (1989), pp. 573-581

[7] Deimling, K. Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | DOI | Zbl

[8] Dhage, B. C. A functional integral inclusion involving discontinuities, Fixed Point Theory, Volume 5 (2004), pp. 53-64 | Zbl

[9] Dugundji, J.; ; Granas, A. Fixed Point Theory, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982

[10] El-Sayed, A. M. A.; Ibrahim, A.-G. Multivalued fractional differential equations, Appl. Math. Comput., Volume 68 (1995), pp. 15-25

[11] El-Sayed, A. M. A.; Ibrahim, A.-G. Set-valued integral equations of fractional-orders, Appl. Math. Comput., Volume 118 (2001), pp. 113-121 | DOI | Zbl

[12] El-Sayed, A. M. A.; Al-Issa, S. M. Monotonic continuous solution for a mixed type integral inclusion of fractional order, J. Math. Appl., Volume 33 (2010), pp. 27-34 | Zbl

[13] El-Sayed, A. M. A.; Al-Issa, S. M. Existence of continuous solutions for nonlinear functional differential and integral inclusions, Malaya J. Mat., Volume 7 (2019), pp. 541-544 | DOI

[14] El-Sayed, A. M. A.; Al-Issa, S. M. Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, Int. J. Differ. Equations Appl., Volume 18 (2019), pp. 1-10

[15] El-Sayed, A. M. A.; Al-Issa, S. M. Monotonic solutions for a quadratic integral equation of fractional order, AIMS Mathematics, Volume 4 (2019), pp. 821-830

[16] Emmanuele, G. Integrable solutions of Hammerstein integral equations, Appl. Anal., Volume 50 (1993), pp. 277-284 | DOI | Zbl

[17] Fyszkowski, A. Continuous selection for a class of non-convex multivalued maps, Studia Math., Volume 76 (1983), pp. 163-174

[18] Ibrahim, A.-G.; El-Sayed, A. M. A. Definite integral of fractional order for set-valued function, J. Fract. Calc., Volume 11 (1997), pp. 81-87

[19] Kuratowski, K.; Ryll-Nardzewski, C. Ageneral theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., Volume 13 (1965), pp. 397-403

[20] Miller, K. S.; Ross, B. An Introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York, 1993 | Zbl

[21] O'Regan, D. Integral inclusions of upper semi-continuous or lower semi-continuous type, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 2391-2399 | DOI | Zbl

[22] Podlubny, I. Fractional Differential Equations, Academic Press, San Diego, 1999

[23] Podlubny, I.; EL-Sayed, A. M. A. On two defintions of fractional calculus, Solvak Academy Sci.-Ins. Eyperimental Phys., Volume 1996 (1996), pp. 3-96

[24] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Integrals and Derivatives of Fractional Orders and Some of their Applications, Nauka i Teknika, Minsk, 1987

[25] Swartz, C. Measure, integration and function spaces, World Scientific Publishing Co., River Edge, 1994 | Zbl

Cité par Sources :