Voir la notice de l'article provenant de la source International Scientific Research Publications
El-Sayed, A. M. A.  1 ; Al-Issa, Sh. M.  2
@article{JNSA_2020_13_4_a1, author = {El-Sayed, A. M. A. and Al-Issa, Sh. M. }, title = {Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach}, journal = {Journal of nonlinear sciences and its applications}, pages = {180-186}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2020}, doi = {10.22436/jnsa.013.04.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.02/} }
TY - JOUR AU - El-Sayed, A. M. A. AU - Al-Issa, Sh. M. TI - Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 180 EP - 186 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.02/ DO - 10.22436/jnsa.013.04.02 LA - en ID - JNSA_2020_13_4_a1 ER -
%0 Journal Article %A El-Sayed, A. M. A. %A Al-Issa, Sh. M. %T Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach %J Journal of nonlinear sciences and its applications %D 2020 %P 180-186 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.02/ %R 10.22436/jnsa.013.04.02 %G en %F JNSA_2020_13_4_a1
El-Sayed, A. M. A. ; Al-Issa, Sh. M. . Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 4, p. 180-186. doi : 10.22436/jnsa.013.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.04.02/
[1] Positive integrable solutions for nonlinear integral and differential inclusions of fractional-orders, Comment. Math., Volume 49 (2009), pp. 171-177 | Zbl
[2] Differential Inclusion, Springer-Verlag, Berlin, 1984 | DOI
[3] On the superposition operator and integrable solutions of some functional equations, Nonlinear Anal., Volume 12 (1988), pp. 777-784 | Zbl | DOI
[4] Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc. Ser. A, Volume 46 (1989), pp. 61-68 | DOI | Zbl
[5] Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228
[6] Continuous extensions of selections, Bull. Polish Acad. Sci. Math., Volume 35 (1989), pp. 573-581
[7] Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | DOI | Zbl
[8] A functional integral inclusion involving discontinuities, Fixed Point Theory, Volume 5 (2004), pp. 53-64 | Zbl
[9] Fixed Point Theory, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1982
[10] Multivalued fractional differential equations, Appl. Math. Comput., Volume 68 (1995), pp. 15-25
[11] Set-valued integral equations of fractional-orders, Appl. Math. Comput., Volume 118 (2001), pp. 113-121 | DOI | Zbl
[12] Monotonic continuous solution for a mixed type integral inclusion of fractional order, J. Math. Appl., Volume 33 (2010), pp. 27-34 | Zbl
[13] Existence of continuous solutions for nonlinear functional differential and integral inclusions, Malaya J. Mat., Volume 7 (2019), pp. 541-544 | DOI
[14] Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, Int. J. Differ. Equations Appl., Volume 18 (2019), pp. 1-10
[15] Monotonic solutions for a quadratic integral equation of fractional order, AIMS Mathematics, Volume 4 (2019), pp. 821-830
[16] Integrable solutions of Hammerstein integral equations, Appl. Anal., Volume 50 (1993), pp. 277-284 | DOI | Zbl
[17] Continuous selection for a class of non-convex multivalued maps, Studia Math., Volume 76 (1983), pp. 163-174
[18] Definite integral of fractional order for set-valued function, J. Fract. Calc., Volume 11 (1997), pp. 81-87
[19] Ageneral theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., Volume 13 (1965), pp. 397-403
[20] An Introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York, 1993 | Zbl
[21] Integral inclusions of upper semi-continuous or lower semi-continuous type, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 2391-2399 | DOI | Zbl
[22] Fractional Differential Equations, Academic Press, San Diego, 1999
[23] On two defintions of fractional calculus, Solvak Academy Sci.-Ins. Eyperimental Phys., Volume 1996 (1996), pp. 3-96
[24] Integrals and Derivatives of Fractional Orders and Some of their Applications, Nauka i Teknika, Minsk, 1987
[25] Measure, integration and function spaces, World Scientific Publishing Co., River Edge, 1994 | Zbl
Cité par Sources :