Global asymptotic stability of the fractional differential equations
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 3, p. 171-175.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this note, we present a global asymptotic stability criterion for the fractional differential equations in triangular form. We use the Caputo generalized fractional derivative in our investigations. In our note, we introduce a new procedure to study the global asymptotic stability of the fractional differential equations.
DOI : 10.22436/jnsa.013.03.06
Classification : 93D25, 93D05, 26A33
Keywords: Caputo left generalized fractional derivative, fractional differential equations with input, Mittag-Leffler input stability

Sene, Ndolane  1

1 Laboratoire Lmdan, Departement de Mathematiques de la Decision, Universite Cheikh Anta Diop de Dakar, BP 5683 Dakar Fann, Senegal
@article{JNSA_2020_13_3_a5,
     author = {Sene, Ndolane },
     title = {Global asymptotic stability of the fractional differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {171-175},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2020},
     doi = {10.22436/jnsa.013.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.06/}
}
TY  - JOUR
AU  - Sene, Ndolane 
TI  - Global asymptotic stability of the fractional differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 171
EP  - 175
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.06/
DO  - 10.22436/jnsa.013.03.06
LA  - en
ID  - JNSA_2020_13_3_a5
ER  - 
%0 Journal Article
%A Sene, Ndolane 
%T Global asymptotic stability of the fractional differential equations
%J Journal of nonlinear sciences and its applications
%D 2020
%P 171-175
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.06/
%R 10.22436/jnsa.013.03.06
%G en
%F JNSA_2020_13_3_a5
Sene, Ndolane . Global asymptotic stability of the fractional differential equations. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 3, p. 171-175. doi : 10.22436/jnsa.013.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.06/

[1] Abdeljawad, T.; Madjidi, F.; Jarad, F.; Sene, N. On Dynamic Systems in the Frame of Singular Function Dependent Kernel Fractional Derivatives, Mathematics, Volume 7 (2019), pp. 1-13 | DOI

[2] Adjabi, Y.; Jarad, F.; Abdeljawad, T. On generalized fractional operators and a Gronwall type inequality with applications, Filomat, Volume 31 (2017), pp. 5457-5473 | Zbl | DOI

[3] Makhlouf, A. Ben Stability with respect to part of the variables of nonlinear Caputo fractional differential equations, Math. Commun., Volume 23 (2018), pp. 119-126 | Zbl

[4] Gambo, Y. Y.; Ameen, R.; Jarad, F.; Abdeljawad, T. Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives, Adv. Difference Equ., Volume 2018 (2018), pp. 1-13 | DOI | Zbl

[5] Jarad, F.; Abdeljawad, T. A modified laplace transform for certain generalized fractional operators, Results Nonlinear Anal., Volume 2 (2018), pp. 88-98

[6] Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators, Adv. Difference Equ., Volume 1 (2017), pp. 1-16 | DOI | Zbl

[7] Katugampola, U. N. New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI

[8] Sene, N. Exponential form for lyapunov function and stability analysis of the fractional differential equations, J. Math. Computer Sci., Volume 18 (2018), pp. 388-397

[9] Sene, N. Lyapunov characterization of the fractional nonlinear systems with exogenous input, Fractal Fract., Volume 2 (2018), pp. 1-10 | DOI

[10] Sene, N. Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives, AIMS Math., Volume 4 (2019), pp. 147-165

[11] Sene, N. Fractional input stability and its application to neural network, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2019), pp. 853-865

[12] Sene, N. Mittag-Leffler input stability of fractional differential equations and its applications, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2019), pp. 867-880 | DOI

[13] Sene, N. Stability analysis of the generalized fractional differential equations with and without exogenous inputs, J. Nonlinear Sci. Appl., Volume 12 (2019), pp. 562-572

[14] Sene, N. Solution of fractional diffusion equations and Cattaneo-Hristov diffusion model, Int. J. Anal. Appl., Volume 17 (2019), pp. 191-207

[15] Sene, N.; Chaillet, A.; Balde, M. Relaxed conditions for the stability of switched nonlinear triangular systems under arbitrary switching, Systems Control Lett., Volume 84 (2015), pp. 52-56 | DOI | Zbl

[16] Sene, N.; Fall, A. N. Homotopy Perturbation $\rho$-Laplace Transform Method and Its Application to the Fractional Diffusion Equation and the Fractional Diffusion-Reaction Equation, Fract. Frac., Volume 3 (2019), pp. 1-15 | DOI

[17] Sene, N.; Srivastava, G. Generalized Mittag-Leffler Input Stability of the Fractional Differential Equations, Symmetry, Volume 11 (2019), pp. 1-12 | Zbl | DOI

[18] Souahi, A.; Makhlouf, A. Ben; Hammami, M. A. Stability analysis of conformable fractional-order nonlinear systems, Indag. Math. (N.S.), Volume 28 (2017), pp. 1265-1274 | DOI | Zbl

Cité par Sources :