Voir la notice de l'article provenant de la source International Scientific Research Publications
Sene, Ndolane  1
@article{JNSA_2020_13_3_a5, author = {Sene, Ndolane }, title = {Global asymptotic stability of the fractional differential equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {171-175}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2020}, doi = {10.22436/jnsa.013.03.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.06/} }
TY - JOUR AU - Sene, Ndolane TI - Global asymptotic stability of the fractional differential equations JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 171 EP - 175 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.06/ DO - 10.22436/jnsa.013.03.06 LA - en ID - JNSA_2020_13_3_a5 ER -
%0 Journal Article %A Sene, Ndolane %T Global asymptotic stability of the fractional differential equations %J Journal of nonlinear sciences and its applications %D 2020 %P 171-175 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.06/ %R 10.22436/jnsa.013.03.06 %G en %F JNSA_2020_13_3_a5
Sene, Ndolane . Global asymptotic stability of the fractional differential equations. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 3, p. 171-175. doi : 10.22436/jnsa.013.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.06/
[1] On Dynamic Systems in the Frame of Singular Function Dependent Kernel Fractional Derivatives, Mathematics, Volume 7 (2019), pp. 1-13 | DOI
[2] On generalized fractional operators and a Gronwall type inequality with applications, Filomat, Volume 31 (2017), pp. 5457-5473 | Zbl | DOI
[3] Stability with respect to part of the variables of nonlinear Caputo fractional differential equations, Math. Commun., Volume 23 (2018), pp. 119-126 | Zbl
[4] Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives, Adv. Difference Equ., Volume 2018 (2018), pp. 1-13 | DOI | Zbl
[5] A modified laplace transform for certain generalized fractional operators, Results Nonlinear Anal., Volume 2 (2018), pp. 88-98
[6] On a new class of fractional operators, Adv. Difference Equ., Volume 1 (2017), pp. 1-16 | DOI | Zbl
[7] New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI
[8] Exponential form for lyapunov function and stability analysis of the fractional differential equations, J. Math. Computer Sci., Volume 18 (2018), pp. 388-397
[9] Lyapunov characterization of the fractional nonlinear systems with exogenous input, Fractal Fract., Volume 2 (2018), pp. 1-10 | DOI
[10] Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives, AIMS Math., Volume 4 (2019), pp. 147-165
[11] Fractional input stability and its application to neural network, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2019), pp. 853-865
[12] Mittag-Leffler input stability of fractional differential equations and its applications, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2019), pp. 867-880 | DOI
[13] Stability analysis of the generalized fractional differential equations with and without exogenous inputs, J. Nonlinear Sci. Appl., Volume 12 (2019), pp. 562-572
[14] Solution of fractional diffusion equations and Cattaneo-Hristov diffusion model, Int. J. Anal. Appl., Volume 17 (2019), pp. 191-207
[15] Relaxed conditions for the stability of switched nonlinear triangular systems under arbitrary switching, Systems Control Lett., Volume 84 (2015), pp. 52-56 | DOI | Zbl
[16] Homotopy Perturbation $\rho$-Laplace Transform Method and Its Application to the Fractional Diffusion Equation and the Fractional Diffusion-Reaction Equation, Fract. Frac., Volume 3 (2019), pp. 1-15 | DOI
[17] Generalized Mittag-Leffler Input Stability of the Fractional Differential Equations, Symmetry, Volume 11 (2019), pp. 1-12 | Zbl | DOI
[18] Stability analysis of conformable fractional-order nonlinear systems, Indag. Math. (N.S.), Volume 28 (2017), pp. 1265-1274 | DOI | Zbl
Cité par Sources :