Voir la notice de l'article provenant de la source International Scientific Research Publications
Ahmad, Jamshaid  1 ; Lateef, Durdana  2
@article{JNSA_2020_13_3_a4, author = {Ahmad, Jamshaid and Lateef, Durdana }, title = {Fixed point theorems for rational type (\(\alpha {\)-\(\Theta} \))-contractions in controlled metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {163-170}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2020}, doi = {10.22436/jnsa.013.03.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.05/} }
TY - JOUR AU - Ahmad, Jamshaid AU - Lateef, Durdana TI - Fixed point theorems for rational type (\(\alpha \)-\(\Theta \))-contractions in controlled metric spaces JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 163 EP - 170 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.05/ DO - 10.22436/jnsa.013.03.05 LA - en ID - JNSA_2020_13_3_a4 ER -
%0 Journal Article %A Ahmad, Jamshaid %A Lateef, Durdana %T Fixed point theorems for rational type (\(\alpha \)-\(\Theta \))-contractions in controlled metric spaces %J Journal of nonlinear sciences and its applications %D 2020 %P 163-170 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.05/ %R 10.22436/jnsa.013.03.05 %G en %F JNSA_2020_13_3_a4
Ahmad, Jamshaid ; Lateef, Durdana . Fixed point theorems for rational type (\(\alpha \)-\(\Theta \))-contractions in controlled metric spaces. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 3, p. 163-170. doi : 10.22436/jnsa.013.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.05/
[1] Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics, Volume 6 (2018), pp. 1-10 | DOI | Zbl
[2] Fixed point results for $\{\alpha, \xi \}$-expansive locally contractive mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-10 | DOI | Zbl
[3] New fixed point theorems for generalized $F$-contractions in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | Zbl | DOI
[4] On ($\alpha-\psi $)-$K$-contractions in the extended $b$-metric space, Filomat, Volume 32 (2018), pp. 5337-5345
[5] Fixed point results for generalized rational $\alpha$-Geraghty contraction, Miskolc Math. Notes, Volume 18 (2017), pp. 611-621
[6] New common fixed point theorems for cyclic compatible contractions, J. Math. Anal., Volume 8 (2017), pp. 1-12
[7] Multivalued fixed point theorems in cone $b$-metric spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9 | DOI | Zbl
[8] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181 | Zbl
[9] Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[10] Some fixed point results of generalised Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., Volume 20 (2016), pp. 566-583
[11] Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476
[12] Fixed point results for $\alpha$-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 362-378
[13] A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI
[14] A generalization of $b$-metric space and some fixed point theorems, Mathematics, Volume 5 (2017), pp. 1-7 | Zbl | DOI
[15] On fixed points of $\alpha-\psi$-contractive multi-valued mappings in cone metric spaces, Abst. Appl. Anal., Volume 2013 (2013), pp. 1-13
[16] Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics, Volume 6 (2018), pp. 1-7 | DOI
[17] Fixed points of a $\Theta$--contraction on metric spaces with a graph, Commun. Nonlinear Anal., Volume 2 (2016), pp. 139-149
[18] Fixed point results for fuzzy mappings in a $b$-metric space, Fixed Point Theory Appl., Volume 2018 (2018), pp. 1-12 | Zbl | DOI
[19] Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-6 | Zbl | DOI
Cité par Sources :