Fixed point theorems for rational type ($\alpha $-$\Theta $)-contractions in controlled metric spaces
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 3, p. 163-170.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper aims to define rational type ($\alpha $-$\Theta $)-contraction in controlled metric space and obtain some advanced fixed point theorems. The outcomes generalize and extend various famous results in the literature. An example and certain consequences are presented to illustrate the significance of established results.
DOI : 10.22436/jnsa.013.03.05
Classification : 54H25, 47H10
Keywords: Fixed point, rational type (\(\alpha \)-\(\Theta \))-contraction, controlled metric spaces

Ahmad, Jamshaid  1 ; Lateef, Durdana  2

1 Department of Mathematics, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, College of Science, Taibah University, Al Madina Al Munawara, 41411, Kingdom of Saudi Arabia
@article{JNSA_2020_13_3_a4,
     author = {Ahmad, Jamshaid  and Lateef, Durdana },
     title = {Fixed point theorems for rational type (\(\alpha {\)-\(\Theta} \))-contractions in controlled metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {163-170},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2020},
     doi = {10.22436/jnsa.013.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.05/}
}
TY  - JOUR
AU  - Ahmad, Jamshaid 
AU  - Lateef, Durdana 
TI  - Fixed point theorems for rational type (\(\alpha \)-\(\Theta \))-contractions in controlled metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 163
EP  - 170
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.05/
DO  - 10.22436/jnsa.013.03.05
LA  - en
ID  - JNSA_2020_13_3_a4
ER  - 
%0 Journal Article
%A Ahmad, Jamshaid 
%A Lateef, Durdana 
%T Fixed point theorems for rational type (\(\alpha \)-\(\Theta \))-contractions in controlled metric spaces
%J Journal of nonlinear sciences and its applications
%D 2020
%P 163-170
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.05/
%R 10.22436/jnsa.013.03.05
%G en
%F JNSA_2020_13_3_a4
Ahmad, Jamshaid ; Lateef, Durdana . Fixed point theorems for rational type (\(\alpha \)-\(\Theta \))-contractions in controlled metric spaces. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 3, p. 163-170. doi : 10.22436/jnsa.013.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.05/

[1] Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics, Volume 6 (2018), pp. 1-10 | DOI | Zbl

[2] Ahmad, J.; Al-Rawashdeh, A. S.; Azam, A. Fixed point results for $\{\alpha, \xi \}$-expansive locally contractive mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-10 | DOI | Zbl

[3] Ahmad, J.; Al-Rawashdeh, A.; Azam, A. New fixed point theorems for generalized $F$-contractions in complete metric spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | Zbl | DOI

[4] Alqahtani, B.; Karapinar, E.; Öztürk, A. On ($\alpha-\psi $)-$K$-contractions in the extended $b$-metric space, Filomat, Volume 32 (2018), pp. 5337-5345

[5] Arshad, M.; Hussain, A. Fixed point results for generalized rational $\alpha$-Geraghty contraction, Miskolc Math. Notes, Volume 18 (2017), pp. 611-621

[6] Aslam, Z.; Ahmad, J.; Sultana, N. New common fixed point theorems for cyclic compatible contractions, J. Math. Anal., Volume 8 (2017), pp. 1-12

[7] Azam, A.; Mehmood, N.; Ahmad, J.; Radenović, S. Multivalued fixed point theorems in cone $b$-metric spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9 | DOI | Zbl

[8] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181 | Zbl

[9] Czerwik, S. Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[10] Huang, H. P.; Radenović, S. Some fixed point results of generalised Lipschitz mappings on cone b-metric spaces over Banach algebras, J. Comput. Anal. Appl., Volume 20 (2016), pp. 566-583

[11] Huang, L.-G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[12] Hussain, N.; Vetro, C.; Vetro, F. Fixed point results for $\alpha$-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 362-378

[13] Jleli, M.; Samet, B. A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI

[14] Kamran, T.; Samreen, M.; Ain, Q. UL A generalization of $b$-metric space and some fixed point theorems, Mathematics, Volume 5 (2017), pp. 1-7 | Zbl | DOI

[15] Kutbi, M. A.; Ahmad, J.; Azam, A. On fixed points of $\alpha-\psi$-contractive multi-valued mappings in cone metric spaces, Abst. Appl. Anal., Volume 2013 (2013), pp. 1-13

[16] Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics, Volume 6 (2018), pp. 1-7 | DOI

[17] Onsod, W.; Saleewong, T.; Ahmad, J.; Al-Mazrooei, A. E.; Kumam, P. Fixed points of a $\Theta$--contraction on metric spaces with a graph, Commun. Nonlinear Anal., Volume 2 (2016), pp. 139-149

[18] Shoaib, A.; Kumam, P.; Shahzad, A.; Phiangsungnoen, S.; Mahmood, Q. Fixed point results for fuzzy mappings in a $b$-metric space, Fixed Point Theory Appl., Volume 2018 (2018), pp. 1-12 | Zbl | DOI

[19] Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-6 | Zbl | DOI

Cité par Sources :