Voir la notice de l'article provenant de la source International Scientific Research Publications
Sow, T. M. M.  1
@article{JNSA_2020_13_3_a0, author = {Sow, T. M. M. }, title = {A new iterative algorithm for solving some nonlinear problems in {Hilbert} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {119-132}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2020}, doi = {10.22436/jnsa.013.03.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.01/} }
TY - JOUR AU - Sow, T. M. M. TI - A new iterative algorithm for solving some nonlinear problems in Hilbert spaces JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 119 EP - 132 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.01/ DO - 10.22436/jnsa.013.03.01 LA - en ID - JNSA_2020_13_3_a0 ER -
%0 Journal Article %A Sow, T. M. M. %T A new iterative algorithm for solving some nonlinear problems in Hilbert spaces %J Journal of nonlinear sciences and its applications %D 2020 %P 119-132 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.01/ %R 10.22436/jnsa.013.03.01 %G en %F JNSA_2020_13_3_a0
Sow, T. M. M. . A new iterative algorithm for solving some nonlinear problems in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 3, p. 119-132. doi : 10.22436/jnsa.013.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.03.01/
[1] Gradient flows in metric spaces and in the space of probability measures, Birkhäuser Verlag, Basel, 2008 | Zbl
[2] The subgradient extragradient method extended to equilibrium problems, Optimization, Volume 64 (2015), pp. 225-248 | Zbl | DOI
[3] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145 | Zbl
[4] Geometric Properties of Banach spaces and Nonlinear Iterations, Springer-Verlag London, London, 2009 | Zbl | DOI
[5] Strong convergence theorems for zeros of bounded maximal monotone nonlinear operators, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-19 | Zbl | DOI
[6] Proximal splitting methods in signal processing, in: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Volume 2011 (2011), pp. 185-212 | DOI
[7] A minimax inequality and applications, in: Inequalities III, Volume 1972 (1972), pp. 103-113 | Zbl
[8] On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., Volume 29 (1991), pp. 403-419 | DOI
[9] Approximation of solutions of variational inequalities for monotone mappings, PanAmer. Math. J., Volume 14 (2004), pp. 49-61 | Zbl
[10] Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., Volume 13 (2002), pp. 938-945 | Zbl | DOI
[11] Variational inequalities, Comm. Pure Appl. Math., Volume 20 (1967), pp. 493-519 | DOI
[12] A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., Volume 47 (2008), pp. 1499-1515 | Zbl | DOI
[13] Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | Zbl | DOI
[14] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510 | Zbl
[15] A general viscosity explicit midpoint rule for quasi--nonexpansive mappings, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 137-148
[16] A general iterative method for nonexpansive mappings in Hibert spaces, J. Math. Anal. Appl., Volume 318 (2006), pp. 43-52 | DOI
[17] Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Math. Appl., Volume 329 (2007), pp. 336-346 | Zbl | DOI
[18] Regularisation, d'inéquations variationelles par approximations succesives, Rev. Franaise Informat. Recherche Opérationnelle, Volume 4 (1970), pp. 154-158
[19] Nonlinear semigroups, American Mathematical Society, Providence, 1992
[20] Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55
[21] A hybrid projection method for generalized mixed equilibrium problems and fixed point problems in Banach spaces, Nonlinear Anal. Hybrid Syst., Volume 4 (2010), pp. 631-643 | Zbl | DOI
[22] Convergence of a modified Halpern-type iteration algorithm for quasi-$\phi$-nonexpansive mappings, Appl. Math. Lett., Volume 22 (2009), pp. 1051-1055 | Zbl | DOI
[23] On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., Volume 1970 (149), pp. 75-88 | DOI | Zbl
[24] An iterative algorithm for solving equilibrium problems, variational inequality problems and fixed point problems with multivalued quasi-nonexpansive mappings, Appl. Set-Valued Anal. Optim., Volume 1 (2019), pp. 171-185
[25] Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., Volume 331 (2007), pp. 506-515 | DOI | Zbl
[26] Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428 | DOI
[27] Weak convergence theorem for zero points of inverse strongly monotone mapping and fixed points of nonexpansive mapping in Hilbert space, Optimization, Volume 66 (2017), pp. 1689-1698 | Zbl | DOI
[28] A self-adaptive Armijo-like step size method for solving monotone variational inequality problems in Hilbert spaces, J. Nonlinear Funct. Anal., Volume 2019 (2019), pp. 1-15
[29] A general iterative method for an infinite family of strictly pseudo-contractive mappings in Hilbert spaces, Appl. Math. Lett., Volume 24 (2011), pp. 901-907 | DOI | Zbl
[30] Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138 | Zbl | DOI
[31] Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), Volume 66 (2002), pp. 240-256 | DOI | Zbl
[32] A variable Krasnoselskii--Mann algorithm and the multiple set split feasiblity problem, Inverse Problem, Volume 26 (2006), pp. 2021-2034
[33] Iterative methods for the split feasiblity problem in infinite-dimensional Hilbert spaces, Inverse Problem, Volume 26 (2010), pp. 1-17
[34] The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | Zbl | DOI
[35] Strong convergence of modified Krasnoselskii-Mann iterative algorithm for nonexpansive mappings, J. Math. Anal. Appl. Comput., Volume 29 (2009), pp. 383-389 | DOI
Cité par Sources :