Modeling turbulence with the Navier-Stokes equations
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 2, p. 97-99.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The Navier-Stokes differential equations describe the motion of fluids which are incompressible. The three-dimensional Navier-Stokes equations misbehave very badly although they are relatively simple-looking. The solutions could wind up being extremely unstable even with nice, smooth, reasonably harmless initial conditions. A mathematical understanding of the outrageous behavior of these equations would dramatically alter the field of fluid mechanics. This paper describes why the three-dimensional Navier-Stokes equations are not solvable, i.e., the equations cannot be used to model turbulence, which is a three-dimensional phenomenon.
DOI : 10.22436/jnsa.013.02.03
Classification : 76F02, 76F55
Keywords: Navier-Stokes equations, turbulence, forecast, geometries, solutions, experimentalist

Wong, Bertrand  1

1 Department of Science and Technology, Eurotech, Singapore Branch
@article{JNSA_2020_13_2_a2,
     author = {Wong, Bertrand },
     title = {Modeling turbulence with the {Navier-Stokes} equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {97-99},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2020},
     doi = {10.22436/jnsa.013.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.03/}
}
TY  - JOUR
AU  - Wong, Bertrand 
TI  - Modeling turbulence with the Navier-Stokes equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 97
EP  - 99
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.03/
DO  - 10.22436/jnsa.013.02.03
LA  - en
ID  - JNSA_2020_13_2_a2
ER  - 
%0 Journal Article
%A Wong, Bertrand 
%T Modeling turbulence with the Navier-Stokes equations
%J Journal of nonlinear sciences and its applications
%D 2020
%P 97-99
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.03/
%R 10.22436/jnsa.013.02.03
%G en
%F JNSA_2020_13_2_a2
Wong, Bertrand . Modeling turbulence with the Navier-Stokes equations. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 2, p. 97-99. doi : 10.22436/jnsa.013.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.03/

[1] Devaney, R. L. An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Menlo Park, 1986 | Zbl

[2] Gleick, J. Chaos: making a new science, Viking Press, New York, 1987 | Zbl

[3] Thompson, J. M. T.; Stewart, H. B. Nonlinear dynamics and chaos, John Wiley & Sons, Chichester, 1986

[4] Wong, B. The mathematical theory of turbulence or chaos, Int. J. Nonlinear Sci., Volume 10 (2010), pp. 264-278 | Zbl

Cité par Sources :