Voir la notice de l'article provenant de la source International Scientific Research Publications
Tien, Le Huy  1 ; Nhien, Le Duc  1 ; Chien, Ta Van  1
@article{JNSA_2020_13_2_a1, author = {Tien, Le Huy and Nhien, Le Duc and Chien, Ta Van }, title = {Nonuniform exponential dichotomy for block triangular systems on the half line}, journal = {Journal of nonlinear sciences and its applications}, pages = {85-96}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2020}, doi = {10.22436/jnsa.013.02.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.02/} }
TY - JOUR AU - Tien, Le Huy AU - Nhien, Le Duc AU - Chien, Ta Van TI - Nonuniform exponential dichotomy for block triangular systems on the half line JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 85 EP - 96 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.02/ DO - 10.22436/jnsa.013.02.02 LA - en ID - JNSA_2020_13_2_a1 ER -
%0 Journal Article %A Tien, Le Huy %A Nhien, Le Duc %A Chien, Ta Van %T Nonuniform exponential dichotomy for block triangular systems on the half line %J Journal of nonlinear sciences and its applications %D 2020 %P 85-96 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.02/ %R 10.22436/jnsa.013.02.02 %G en %F JNSA_2020_13_2_a1
Tien, Le Huy ; Nhien, Le Duc ; Chien, Ta Van . Nonuniform exponential dichotomy for block triangular systems on the half line. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 2, p. 85-96. doi : 10.22436/jnsa.013.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.02/
[1] Fredholm Operators and Nonuniform Exponential Dichotomies, Chaos Solitons Fractals, Volume 85 (2016), pp. 120-127 | Zbl | DOI
[2] Nonuniform exponential dichotomies and Fredholm operators for flows, Aequationes Math., Volume 91 (2017), pp. 301-316 | DOI | Zbl
[3] Nonuniform exponential dichotomies and Lyapunov functions, Regul. Chaotic Dyn., Volume 22 (2017), pp. 197-209 | Zbl | DOI
[4] Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 2007
[5] Stable manifolds for nonautonomous equations without exponential dichotomy, J. Differential Equations, Volume 221 (2006), pp. 58-90 | Zbl
[6] Stability of Nonautonomous Differential Equations, Springer, Berlin, 2008 | DOI
[7] Nonuniform exponential dichotomies and admissibility, Discrete Contin. Dyn. Syst., Volume 30 (2011), pp. 39-53 | Zbl
[8] On two notions of exponential dichotomy, Dyn. Syst., Volume 33 (2018), pp. 708-721 | DOI | Zbl
[9] Criteria for exponential dichotomy for triangular systems, J. Math. Anal. Appl., Volume 428 (2015), pp. 525-543 | Zbl | DOI
[10] Dichotomies in Stability Theory, Springer-Verlag, Berlin, 1978 | Zbl | DOI
[11] Die Stabilitatsfrage bei Differentialgleichungen, (German) Math. Z., Volume 32 (1930), pp. 703-728 | DOI | Zbl
[12] Equivalences between nonuniform exponential dichotomy and admissibility, J. Differential Equations, Volume 262 (2017), pp. 682-747 | DOI | Zbl
Cité par Sources :