Nonuniform exponential dichotomy for block triangular systems on the half line
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 2, p. 85-96.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we discuss the nonuniform exponential dichotomy properties of nonautonomous systems of linear differential equations. Since any linear differential systems are kinematically similar to a triangular system, considering the relation between the nonuniform exponential dichotomy properties of the triangular system is necessary. Without loss of generality, we consider block upper triangular systems and give the criteria for the nonuniform exponential dichotomy of triangular systems on the half line for unbounded systems.
DOI : 10.22436/jnsa.013.02.02
Classification : 34D09, 34A30
Keywords: Nonuniform exponential dichotomy, triangular system, exponential dichotomy

Tien, Le Huy  1 ; Nhien, Le Duc  1 ; Chien, Ta Van  1

1 Department of Mathematics, Mechanics and Informatics, Vietnam National University at Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
@article{JNSA_2020_13_2_a1,
     author = {Tien, Le Huy  and Nhien, Le Duc  and Chien, Ta Van },
     title = {Nonuniform exponential dichotomy for block triangular systems  on the half line},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {85-96},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2020},
     doi = {10.22436/jnsa.013.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.02/}
}
TY  - JOUR
AU  - Tien, Le Huy 
AU  - Nhien, Le Duc 
AU  - Chien, Ta Van 
TI  - Nonuniform exponential dichotomy for block triangular systems  on the half line
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 85
EP  - 96
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.02/
DO  - 10.22436/jnsa.013.02.02
LA  - en
ID  - JNSA_2020_13_2_a1
ER  - 
%0 Journal Article
%A Tien, Le Huy 
%A Nhien, Le Duc 
%A Chien, Ta Van 
%T Nonuniform exponential dichotomy for block triangular systems  on the half line
%J Journal of nonlinear sciences and its applications
%D 2020
%P 85-96
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.02/
%R 10.22436/jnsa.013.02.02
%G en
%F JNSA_2020_13_2_a1
Tien, Le Huy ; Nhien, Le Duc ; Chien, Ta Van . Nonuniform exponential dichotomy for block triangular systems  on the half line. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 2, p. 85-96. doi : 10.22436/jnsa.013.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.02.02/

[1] Barreira, L.; Dragičević, D.; Valls, C. Fredholm Operators and Nonuniform Exponential Dichotomies, Chaos Solitons Fractals, Volume 85 (2016), pp. 120-127 | Zbl | DOI

[2] Barreira, L.; Dragičević, D.; Valls, C. Nonuniform exponential dichotomies and Fredholm operators for flows, Aequationes Math., Volume 91 (2017), pp. 301-316 | DOI | Zbl

[3] Barreira, L.; Dragičević, D.; Valls, C. Nonuniform exponential dichotomies and Lyapunov functions, Regul. Chaotic Dyn., Volume 22 (2017), pp. 197-209 | Zbl | DOI

[4] Barreira, L.; Pesin, Y. Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 2007

[5] Barreira, L.; Valls, C. Stable manifolds for nonautonomous equations without exponential dichotomy, J. Differential Equations, Volume 221 (2006), pp. 58-90 | Zbl

[6] Barreira, L.; Valls, C. Stability of Nonautonomous Differential Equations, Springer, Berlin, 2008 | DOI

[7] Barreira, L.; Valls, C. Nonuniform exponential dichotomies and admissibility, Discrete Contin. Dyn. Syst., Volume 30 (2011), pp. 39-53 | Zbl

[8] Barreira, L.; Valls, C. On two notions of exponential dichotomy, Dyn. Syst., Volume 33 (2018), pp. 708-721 | DOI | Zbl

[9] Battelli, F.; Palmer, K. J. Criteria for exponential dichotomy for triangular systems, J. Math. Anal. Appl., Volume 428 (2015), pp. 525-543 | Zbl | DOI

[10] Coppel, W. A. Dichotomies in Stability Theory, Springer-Verlag, Berlin, 1978 | Zbl | DOI

[11] Perron, O. Die Stabilitatsfrage bei Differentialgleichungen, (German) Math. Z., Volume 32 (1930), pp. 703-728 | DOI | Zbl

[12] Zhou, L. F.; Lu, K. N.; Zhang, W. N. Equivalences between nonuniform exponential dichotomy and admissibility, J. Differential Equations, Volume 262 (2017), pp. 682-747 | DOI | Zbl

Cité par Sources :