Voir la notice de l'article provenant de la source International Scientific Research Publications
Edja, Kouame Beranger  1 ; Toure, Kidjegbo Augustin  1 ; Koua, Brou Jean-Claude  2
@article{JNSA_2020_13_1_a5, author = {Edja, Kouame Beranger and Toure, Kidjegbo Augustin and Koua, Brou Jean-Claude }, title = {Numerical quenching of a heat equation with nonlinear boundary conditions}, journal = {Journal of nonlinear sciences and its applications}, pages = {65-74}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2020}, doi = {10.22436/jnsa.013.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.06/} }
TY - JOUR AU - Edja, Kouame Beranger AU - Toure, Kidjegbo Augustin AU - Koua, Brou Jean-Claude TI - Numerical quenching of a heat equation with nonlinear boundary conditions JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 65 EP - 74 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.06/ DO - 10.22436/jnsa.013.01.06 LA - en ID - JNSA_2020_13_1_a5 ER -
%0 Journal Article %A Edja, Kouame Beranger %A Toure, Kidjegbo Augustin %A Koua, Brou Jean-Claude %T Numerical quenching of a heat equation with nonlinear boundary conditions %J Journal of nonlinear sciences and its applications %D 2020 %P 65-74 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.06/ %R 10.22436/jnsa.013.01.06 %G en %F JNSA_2020_13_1_a5
Edja, Kouame Beranger ; Toure, Kidjegbo Augustin ; Koua, Brou Jean-Claude . Numerical quenching of a heat equation with nonlinear boundary conditions. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 65-74. doi : 10.22436/jnsa.013.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.06/
[1] Numerical study of the blow-up time of positive solutions of semilinear heat equations, Far East J. Appl. Math., Volume 4 (2018), pp. 291-308
[2] Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris Sér. I Math., Volume 333 (2001), pp. 795-800 | DOI | Zbl
[3] Quenching time of solutions for some nonlinear parabolic equations with Dirichlet boundary condition and a potential, Ann. Math. Inform., Volume 35 (2008), pp. 31-42 | Zbl
[4] Parabolic problems with nonlinear absorptions and releases at the boundaries, Appl. Math. Comput., Volume 121 (2001), pp. 203-209 | Zbl | DOI
[5] Numerical Blow-up for a Heat Equation with Nonlinear Boundary Conditions, J. Math. Res., Volume 10 (2018), pp. 119-128
[6] On Solutions of Initial-Boundary Problem for $u_t=u_{xx}+\frac{1}{1-u}$, Publ. RIMS, Kyoto Univ., Volume 10 (1975), pp. 729-736
[7] A quenching problem for the heat equation, J. Integral Equations Appl., Volume 14 (2002), pp. 53-72 | Zbl
[8] The Quenching of Solutions of Linear Parabolic and Hyperbolic Equations with Nonlinear Boundary Conditions, SIAM J. Math. Anal., Volume 4 (1983), pp. 1139-1153 | Zbl | DOI
[9] The quenching of solutions of some nonlinear parabolic equations, SIAM J. Math. Anal., Volume 11 (1980), pp. 842-847 | Zbl | DOI
[10] Numerical Solution of Quenching Problems Using Mesh-Dependent Variable Temporal Steps, Appl. Numer. Math., Volume 57 (2007), pp. 791-800 | DOI | Zbl
[11] Numerical approximation of the blow-up time for a semilinear parabolic equation with nonlinear boundary equation, Far East J. Math. Sci. (FJMS), Volume 60 (2012), pp. 125-167 | Zbl
[12] Quenching for semidiscretizations of a heat equation with a singular boundary condition, Asymptot. Anal., Volume 59 (2008), pp. 27-38 | Zbl
[13] Numerical blow-up time for a parabolic equation with nonlinear boundary conditions, Int. J. Numer. Methods Appl., Volume 17 (2018), pp. 141-160
[14] Quenching behavior of a semilinear reaction-diffusion system with singular boundary condition, Turkish J. Math., Volume 40 (2016), pp. 166-180
[15] The quenching behavior of a semilinear heat equation with a singular boundary outflux, Quart. Appl. Math., Volume 72 (2014), pp. 747-752 | Zbl
[16] Numerical analysis of quenching-Heat conduction in metallic materials, Appl. Math. Model., Volume 33 (2009), pp. 2464-2473 | Zbl | DOI
[17] The quenching behavior of a nonlinear parabolic equation with nonlinear boundary outflux, Appl. Math. Comput., Volume 184 (2007), pp. 624-630 | Zbl | DOI
Cité par Sources :