The Marshall-Olkin exponentiated generalized G family of distributions: properties, applications, and characterizations
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 34-52.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we propose and study a new class of continuous distributions called the Marshall-Olkin exponentiated generalized G (MOEG-G) family which extends the Marshall-Olkin-G family introduced by Marshall and Olkin [A. W. Marshall, I. Olkin, Biometrika, $\bf 84$ (1997), 641--652]. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, order statistics and probability weighted moments are derived. Some characterizations for the new family are presented. Maximum likelihood estimation for the model parameters under uncensored and censored data is addressed in Section 5 as well as a simulation study to assess the performance of the estimators. The importance and flexibility of the new family are illustrated by means of two applications to real data sets.
DOI : 10.22436/jnsa.013.01.04
Classification : 60E05, 62E10
Keywords: Marshall-Olkin family, characterizations, censored Data, generating function, order statistics, maximum likelihood estimation

Yousof, Haitham M.  1 ; Rasekhi, Mahdi  2 ; Alizadeh, Morad  3 ; Hamedani, G. G.  4

1 Department of Statistics, Mathematics and Insurance, Benha University, Egypt
2 Department of Statistics, Malayer University, Malayer, Iran
3 Department of Statistics, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
4 Department of Mathematics, Statistics and Computer Science, Marquette University, USA
@article{JNSA_2020_13_1_a3,
     author = {Yousof, Haitham M.  and Rasekhi, Mahdi  and Alizadeh, Morad  and Hamedani, G. G. },
     title = {The {Marshall-Olkin} exponentiated generalized {G} family of distributions: properties, applications, and characterizations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {34-52},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     doi = {10.22436/jnsa.013.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.04/}
}
TY  - JOUR
AU  - Yousof, Haitham M. 
AU  - Rasekhi, Mahdi 
AU  - Alizadeh, Morad 
AU  - Hamedani, G. G. 
TI  - The Marshall-Olkin exponentiated generalized G family of distributions: properties, applications, and characterizations
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 34
EP  - 52
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.04/
DO  - 10.22436/jnsa.013.01.04
LA  - en
ID  - JNSA_2020_13_1_a3
ER  - 
%0 Journal Article
%A Yousof, Haitham M. 
%A Rasekhi, Mahdi 
%A Alizadeh, Morad 
%A Hamedani, G. G. 
%T The Marshall-Olkin exponentiated generalized G family of distributions: properties, applications, and characterizations
%J Journal of nonlinear sciences and its applications
%D 2020
%P 34-52
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.04/
%R 10.22436/jnsa.013.01.04
%G en
%F JNSA_2020_13_1_a3
Yousof, Haitham M. ; Rasekhi, Mahdi ; Alizadeh, Morad ; Hamedani, G. G. . The Marshall-Olkin exponentiated generalized G family of distributions: properties, applications, and characterizations. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 34-52. doi : 10.22436/jnsa.013.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.04/

[1] Aarset, M. V. How to Identify Bathtub Hazard Rate, IEEE Trans. Reliab., Volume 36 (1987), pp. 106-108 | DOI | Zbl

[2] Afify, A. Z.; Alizadeh, M.; Yousof, H. M.; Aryal, G.; Ahmad, M. The transmuted geometric-G family of distributions: theory and applications, Pakistan J. Statist., Volume 32 (2016), pp. 139-160

[3] Afify, A. Z.; Cordeiro, G. M.; Yousof, H. M.; Alzaatreh, A.; Nofal, Z. M. The Kumaraswamy transmuted-G family of distributions: properties and applications, J. Data Sci., Volume 14 (2016), pp. 245-270

[4] Afify, A. Z.; Yousof, H. M.; Nadarajah, S. The beta transmuted-H family for lifetime data, Stat. Inference, Volume 10 (2017), pp. 505-520 | Zbl

[5] Alizadeh, M.; Cordeiro, G. M.; Brito, E. de; Demetrio, C. G. B. The beta Marshall-Olkin family of distributions, J. Stat. Distrib. Appl., Volume 2 (2015), pp. 1-18 | Zbl | DOI

[6] Alizadeh, M.; Tahir, M. H.; Cordeiro, G. M.; Mansoor, M.; Zubair, M.; Hamedani, G. G. The Kumaraswamy Marshal-Olkin family of distributions, J. Egyptian Math. Soc., Volume 23 (2015), pp. 546-557 | DOI | Zbl

[7] Alizadeh, M.; Yousof, H. M.; Afify, A. Z.; Cordeiro, G. M.; Mansoor, M. The complementary generalized transmuted poisson-G family, Austrian J. Stat., Volume 47 (2018), pp. 60-80 | DOI

[8] Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions, Metron, Volume 71 (2013), pp. 63-79 | DOI | Zbl

[9] Alzaghal, A.; Famoye, F.; Lee, C. Exponentiated T-X family of distributions with some applications, Int. J. Probab. Stat., Volume 2 (2013), pp. 31-49

[10] Azzalini, A. A class of distributions which include the normal, Scand. J. Statist., Volume 12 (1985), pp. 171-178

[11] Brito, E.; Cordeiro, G. M.; Yousof, H. M.; Alizadeh, M.; Silva, G. O. Topp-Leone Odd Log-Logistic Family of Distributions, J. Stat. Comput. Simul., Volume 87 (2017), pp. 3040-3058 | Zbl | DOI

[12] Cordeiro, G. M.; Ortega, E. M. M.; Cunha, D. C. C. da The exponentiated generalized class of distributions, J. Data Sci., Volume 11 (2013), pp. 1-27

[13] Cordeiro, G. M.; Ortega, E. M. M.; Popović, B. V. The gamma-Lomax distribution, J. Stat. Comput. Simul., Volume 85 (2013), pp. 305-319 | DOI

[14] Cordeiro, G. M.; Yousof, H. M.; Ramires, T. G.; Ortega, E. M. M. The Burr XII system of densities: properties, regression model and applications, J. Stat. Comput. Simul., Volume 88 (2018), pp. 432-456 | DOI

[15] Glänzel, W. A characterization theorem based on truncated moments and its application to some distribution families, Mathematical statistics and probability theory, Vol. B (Bad Tatzmannsdorf, 1986), Volume 1987 (1987), pp. 75-84 | DOI | Zbl

[16] Glänzel, W. Some consequences of a characterization theorem based on truncated moments, Statistics, Volume 21 (1990), pp. 613-618 | Zbl | DOI

[17] Gupta, R. C.; Gupta, P. L.; Gupta, R. D. Modeling failure time data by Lehmann alternatives, Comm. Statist. Theory Methods, Volume 27 (1998), pp. 887-904 | DOI

[18] Gupta, R. D.; Kundu, D. Generalized exponential distributions, Aust. N. Z. J. Stat., Volume 41 (1999), pp. 173-188 | DOI | Zbl

[19] Hamedani, . G.; Altun, E.; Korkmaz, M. C.; Yousof, H. M.; Butt, N. S. A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling, Pak. J. Stat. Oper. Res., Volume 14 (2018), pp. 737-758

[20] Korkmaz, M. C.; Altun, E.; Yousof, H. M.; Hamedani, G. G. The odd power Lindley generator of probability distributions: properties, characterizations and regression modeling, Int. J. Stat. Probab., Volume 8 (2019), pp. 70-89

[21] Leadbetter, M. R.; Lindgren, G.; Rootzén, H. Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York-Berlin, 1983 | Zbl | DOI

[22] Lee, C.; Famoye, F.; Olumolade, O. Beta-Weibull distribution: some properties and applications to censored data, J. Modern Appl. Stat. Methods, Volume 6 (2007), pp. 173-186

[23] Lee, E. T.; Wang, J. W. Statistical Methods for Survival Data Analysis, Wiley-Interscience [John Wiley & Sons], Hoboken, 2003 | Zbl

[24] Lemonte, A. J.; Cordeiro, G. M. An extended Lomax distribution, Statistics, Volume 47 (2013), pp. 800-816 | Zbl | DOI

[25] Marshall, A. W.; Olkin, I. A new methods for adding a parameter to a family of distributions with application to the Exponential and Weibull families, Biometrika, Volume 84 (1997), pp. 641-652 | DOI

[26] Merovci, F.; Alizadeh, M.; Yousof, H. M.; Hamedani, G. G. The exponentiated transmuted-G family of distributions: theory and applications, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 10800-10822 | DOI | Zbl

[27] Mudholkar, G. S.; Srivastava, D. K. Exponentiated Weibull family for analysing bathtub failure rate data, IEEE Trans. Reliab., Volume 42 (1993), pp. 299-302 | DOI

[28] Nadarajah, S. The exponentiated Gumbel distribution with climate application, Environmetrics, Volume 17 (2006), pp. 13-23 | DOI

[29] Nadarajah, S.; Cordeiro, G. M.; Ortega, E. M. M. The Zografos Balakrishnan-G family of distributions: Mathematical properties and applications, Comm. Statist. Theory Methods, Volume 44 (2015), pp. 186-215 | Zbl | DOI

[30] Nadarajah, S.; Gupta, A. K. The exponentiated gamma distribution with application to drought data, Calcutta Statist. Assoc. Bull., Volume 59 (2007), pp. 29-54 | DOI | Zbl

[31] Nofal, Z. M.; Afify, A. Z.; Yousof, H. M.; Cordeiro, G. M. The generalized transmuted-G family of distributions, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 4119-4136 | DOI | Zbl

[32] Ristić, M. M.; Kundu, D. Generalized exponential geometric extreme distribution, J. Stat. Theory Pract., Volume 10 (2016), pp. 179-201 | DOI

[33] Roberts, H. V. Data Analysis for Managers with Minitab, Scientific Press, Redwood City, 1988

[34] Salman, S. M.; Sangadji, P. Total time on test plot analysis for mechanical component of the reactor, Atom Indones, Volume 25 (1999), pp. 61-155

[35] Shaw, W. T.; Buckley, I. R. C. The alchemy of probability distributions: beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map, arXiv, Volume 2007 (2007), pp. 1-28

[36] Shirke, D. T.; Kakade, C. S. On exponentiated lognormal distribution, Int. J. Agricultural Stat. Sci., Volume 2 (2006), pp. 319-326

[37] Silva, G. O.; Ortega, E. M. M.; Cordeiro, G. M. The beta modified Weibull distribution, Lifetime Data Anal., Volume 16 (2010), pp. 409-430 | Zbl | DOI

[38] Stollmack, S.; Harris, C. M. Failure-rate analysis applied to recidivism data, Oper. Res., Volume 22 (1974), pp. 1192-1205 | DOI

[39] Yousof, H. M.; Afify, A. Z.; Alizadeh, M.; Butt, N. S.; Hamedani, G. G.; Ali, M. M. The transmuted exponentiated generalized-G family of distributions, Pak. J. Stat. Oper. Res., Volume 11 (2015), pp. 441-464

[40] Yousof, H. M.; Afify, A. Z.; Hamedani, G. G.; Aryal, G. The Burr X generator of distributions for lifetime data, Journal of Statistical Theory and Applications, Volume 16 (2017), pp. 288-305

[41] Yousof, H. M.; Rasekhi, M.; Afify, A. Z.; Ghosh, I.; Alizadeh, M.; Hamedani, G. G. The beta Weibull-G family of distributions:theory, characterizations and applications, Pak. J. Statist., Volume 33 (2017), pp. 95-116

[42] Zografos, K.; Balakrishnan, N. On families of beta and generalized gamma-generated distributions and associated inference, Stat. Methodol., Volume 6 (2009), pp. 344-362 | Zbl | DOI

Cité par Sources :