Voir la notice de l'article provenant de la source International Scientific Research Publications
Yousof, Haitham M.  1 ; Rasekhi, Mahdi  2 ; Alizadeh, Morad  3 ; Hamedani, G. G.  4
@article{JNSA_2020_13_1_a3, author = {Yousof, Haitham M. and Rasekhi, Mahdi and Alizadeh, Morad and Hamedani, G. G. }, title = {The {Marshall-Olkin} exponentiated generalized {G} family of distributions: properties, applications, and characterizations}, journal = {Journal of nonlinear sciences and its applications}, pages = {34-52}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2020}, doi = {10.22436/jnsa.013.01.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.04/} }
TY - JOUR AU - Yousof, Haitham M. AU - Rasekhi, Mahdi AU - Alizadeh, Morad AU - Hamedani, G. G. TI - The Marshall-Olkin exponentiated generalized G family of distributions: properties, applications, and characterizations JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 34 EP - 52 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.04/ DO - 10.22436/jnsa.013.01.04 LA - en ID - JNSA_2020_13_1_a3 ER -
%0 Journal Article %A Yousof, Haitham M. %A Rasekhi, Mahdi %A Alizadeh, Morad %A Hamedani, G. G. %T The Marshall-Olkin exponentiated generalized G family of distributions: properties, applications, and characterizations %J Journal of nonlinear sciences and its applications %D 2020 %P 34-52 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.04/ %R 10.22436/jnsa.013.01.04 %G en %F JNSA_2020_13_1_a3
Yousof, Haitham M. ; Rasekhi, Mahdi ; Alizadeh, Morad ; Hamedani, G. G. . The Marshall-Olkin exponentiated generalized G family of distributions: properties, applications, and characterizations. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 34-52. doi : 10.22436/jnsa.013.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.04/
[1] How to Identify Bathtub Hazard Rate, IEEE Trans. Reliab., Volume 36 (1987), pp. 106-108 | DOI | Zbl
[2] The transmuted geometric-G family of distributions: theory and applications, Pakistan J. Statist., Volume 32 (2016), pp. 139-160
[3] The Kumaraswamy transmuted-G family of distributions: properties and applications, J. Data Sci., Volume 14 (2016), pp. 245-270
[4] The beta transmuted-H family for lifetime data, Stat. Inference, Volume 10 (2017), pp. 505-520 | Zbl
[5] The beta Marshall-Olkin family of distributions, J. Stat. Distrib. Appl., Volume 2 (2015), pp. 1-18 | Zbl | DOI
[6] The Kumaraswamy Marshal-Olkin family of distributions, J. Egyptian Math. Soc., Volume 23 (2015), pp. 546-557 | DOI | Zbl
[7] The complementary generalized transmuted poisson-G family, Austrian J. Stat., Volume 47 (2018), pp. 60-80 | DOI
[8] A new method for generating families of continuous distributions, Metron, Volume 71 (2013), pp. 63-79 | DOI | Zbl
[9] Exponentiated T-X family of distributions with some applications, Int. J. Probab. Stat., Volume 2 (2013), pp. 31-49
[10] A class of distributions which include the normal, Scand. J. Statist., Volume 12 (1985), pp. 171-178
[11] Topp-Leone Odd Log-Logistic Family of Distributions, J. Stat. Comput. Simul., Volume 87 (2017), pp. 3040-3058 | Zbl | DOI
[12] The exponentiated generalized class of distributions, J. Data Sci., Volume 11 (2013), pp. 1-27
[13] The gamma-Lomax distribution, J. Stat. Comput. Simul., Volume 85 (2013), pp. 305-319 | DOI
[14] The Burr XII system of densities: properties, regression model and applications, J. Stat. Comput. Simul., Volume 88 (2018), pp. 432-456 | DOI
[15] A characterization theorem based on truncated moments and its application to some distribution families, Mathematical statistics and probability theory, Vol. B (Bad Tatzmannsdorf, 1986), Volume 1987 (1987), pp. 75-84 | DOI | Zbl
[16] Some consequences of a characterization theorem based on truncated moments, Statistics, Volume 21 (1990), pp. 613-618 | Zbl | DOI
[17] Modeling failure time data by Lehmann alternatives, Comm. Statist. Theory Methods, Volume 27 (1998), pp. 887-904 | DOI
[18] Generalized exponential distributions, Aust. N. Z. J. Stat., Volume 41 (1999), pp. 173-188 | DOI | Zbl
[19] A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling, Pak. J. Stat. Oper. Res., Volume 14 (2018), pp. 737-758
[20] The odd power Lindley generator of probability distributions: properties, characterizations and regression modeling, Int. J. Stat. Probab., Volume 8 (2019), pp. 70-89
[21] Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York-Berlin, 1983 | Zbl | DOI
[22] Beta-Weibull distribution: some properties and applications to censored data, J. Modern Appl. Stat. Methods, Volume 6 (2007), pp. 173-186
[23] Statistical Methods for Survival Data Analysis, Wiley-Interscience [John Wiley & Sons], Hoboken, 2003 | Zbl
[24] An extended Lomax distribution, Statistics, Volume 47 (2013), pp. 800-816 | Zbl | DOI
[25] A new methods for adding a parameter to a family of distributions with application to the Exponential and Weibull families, Biometrika, Volume 84 (1997), pp. 641-652 | DOI
[26] The exponentiated transmuted-G family of distributions: theory and applications, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 10800-10822 | DOI | Zbl
[27] Exponentiated Weibull family for analysing bathtub failure rate data, IEEE Trans. Reliab., Volume 42 (1993), pp. 299-302 | DOI
[28] The exponentiated Gumbel distribution with climate application, Environmetrics, Volume 17 (2006), pp. 13-23 | DOI
[29] The Zografos Balakrishnan-G family of distributions: Mathematical properties and applications, Comm. Statist. Theory Methods, Volume 44 (2015), pp. 186-215 | Zbl | DOI
[30] The exponentiated gamma distribution with application to drought data, Calcutta Statist. Assoc. Bull., Volume 59 (2007), pp. 29-54 | DOI | Zbl
[31] The generalized transmuted-G family of distributions, Comm. Statist. Theory Methods, Volume 46 (2017), pp. 4119-4136 | DOI | Zbl
[32] Generalized exponential geometric extreme distribution, J. Stat. Theory Pract., Volume 10 (2016), pp. 179-201 | DOI
[33] Data Analysis for Managers with Minitab, Scientific Press, Redwood City, 1988
[34] Total time on test plot analysis for mechanical component of the reactor, Atom Indones, Volume 25 (1999), pp. 61-155
[35] The alchemy of probability distributions: beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map, arXiv, Volume 2007 (2007), pp. 1-28
[36] On exponentiated lognormal distribution, Int. J. Agricultural Stat. Sci., Volume 2 (2006), pp. 319-326
[37] The beta modified Weibull distribution, Lifetime Data Anal., Volume 16 (2010), pp. 409-430 | Zbl | DOI
[38] Failure-rate analysis applied to recidivism data, Oper. Res., Volume 22 (1974), pp. 1192-1205 | DOI
[39] The transmuted exponentiated generalized-G family of distributions, Pak. J. Stat. Oper. Res., Volume 11 (2015), pp. 441-464
[40] The Burr X generator of distributions for lifetime data, Journal of Statistical Theory and Applications, Volume 16 (2017), pp. 288-305
[41] The beta Weibull-G family of distributions:theory, characterizations and applications, Pak. J. Statist., Volume 33 (2017), pp. 95-116
[42] On families of beta and generalized gamma-generated distributions and associated inference, Stat. Methodol., Volume 6 (2009), pp. 344-362 | Zbl | DOI
Cité par Sources :