Solution of the tumor-immune system by differential transform method
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 9-21.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, differential transform method (DTM) is presented to solve Tumor-immune system at two initial conditions where two different cases of the interaction between tumor cells and effector cells. The system is presented to show the ability of the method for non-linear systems of differential equations. By using small iteration, the results of DTM are near the results of Runge-Kutta fourth-fifth order method (ode45 solver in MATLAB) and better than the results of Runge-Kutta second-third order method (ode23 solver in MATLAB). Also, the residual error of DTM's solutions approach zero. Therefore, DTM's solutions approximate exact solutions. Finally, we conclude formulae that we can find DTM's solutions, better than the results of Runge-Kutta second-third order method, in any interval we need.
DOI : 10.22436/jnsa.013.01.02
Classification : 37N30
Keywords: Kuznetsov and Taylor's model, differential transform method, Runge-Kutta fourth-fifth order method, Runge-Kutta second-third order method, tumor-immune system

Kassem, Mohamed Abd El Hady  1 ; Hemeda, A. A.  1 ; Abdeen, M. A.  1

1 Department of Mathematics, Faculty of Science, Tanta University, Egypt
@article{JNSA_2020_13_1_a1,
     author = {Kassem, Mohamed Abd El Hady  and Hemeda, A. A.  and Abdeen, M. A. },
     title = {Solution of the tumor-immune system by differential transform method},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {9-21},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     doi = {10.22436/jnsa.013.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.02/}
}
TY  - JOUR
AU  - Kassem, Mohamed Abd El Hady 
AU  - Hemeda, A. A. 
AU  - Abdeen, M. A. 
TI  - Solution of the tumor-immune system by differential transform method
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 9
EP  - 21
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.02/
DO  - 10.22436/jnsa.013.01.02
LA  - en
ID  - JNSA_2020_13_1_a1
ER  - 
%0 Journal Article
%A Kassem, Mohamed Abd El Hady 
%A Hemeda, A. A. 
%A Abdeen, M. A. 
%T Solution of the tumor-immune system by differential transform method
%J Journal of nonlinear sciences and its applications
%D 2020
%P 9-21
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.02/
%R 10.22436/jnsa.013.01.02
%G en
%F JNSA_2020_13_1_a1
Kassem, Mohamed Abd El Hady ; Hemeda, A. A. ; Abdeen, M. A. . Solution of the tumor-immune system by differential transform method. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 9-21. doi : 10.22436/jnsa.013.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.02/

[1] Adam, J. A. Effects of vascularization on lymphocyte/tumor cell dynamics: Qualitative features, Math. Comput. Modelling, Volume 23 (1996), pp. 1-10 | Zbl | DOI

[2] Arikoglu, A.; Ozkol, I. Solution of boundary value problems for integro-differential equations by using transform method, Appl. Math. Comput., Volume 168 (2005), pp. 1145-1158 | DOI | Zbl

[3] Bahşı, A. K.; Şahin, N.; Sezer, M. A numerical algorithm with residual error estimation for solution of high-order Pantograph-type functional differential equations using Fibonacci polynomials, New Trends Math. Sci., Volume 3 (2015), pp. 90-102

[4] Bahşı, A. K.; Yalcinbas, S. Fibonacci collocation method with a residual error function to solve linear Volterra integro differential equations, New Trends Math. Sci., Volume 4 (2016), pp. 1-14

[5] Biazar, J.; Babolian, E.; Islam, R. Solution of the system of ordinary differential equations by Adomian decomposition method, Appl. Math. Comput., Volume 147 (2004), pp. 713-719 | Zbl

[6] Biazar, J.; Shafiof, S. M. A Simple Algorithm for Calculating Adomian Polynomials, Int. J. Contemp. Math. Sci., Volume 2 (2007), pp. 975-982 | Zbl

[7] Butcher, J. C. Numerical methods for ordinary differential equations, John Wiley & Sons, Chichester, 2003 | DOI

[8] Damirchi, J.; Shamami, T. Rahimi Differential transform method for a nonlinear system of differential equations arising in HIV infection of CD4+T cells, Int. J. Nonlinear Anal. Appl., Volume 7 (2016), pp. 269-277

[9] DeLisi, C.; Rescigno, A. Immune surveillance and neoplasia--I. A minimal mathematical model, Bull. Math. Biology, Volume 39 (1977), pp. 201-221 | DOI | Zbl

[10] Galach, M. Dynamics of the tumor--immune system comptition--the effect of time delay, Int. J. Appl. Math. Comput. Sci., Volume 13 (2003), pp. 395-406

[11] Hussin, C. H. C.; Kılıçman, A. On the Solution of Fractional Order Nonlinear Boundary Value Problems By Using Differential Transformation Method, Eur. J. Pure Appl. Math., Volume 4 (2011), pp. 174-185 | Zbl

[12] Kılıçman, A.; Altun, O. On the solutions of some boundary value problems by using differential transformation method with convolution terms, Filomat, Volume 26 (2012), pp. 917-928 | Zbl

[13] Kılıçman, A.; Altun, O. On higher-orderboundaryvalueproblemsbyusing differential transformationmethodwith convolution terms, J. Franklin Inst., Volume 351 (2014), pp. 631-642 | DOI

[14] Kılıçman, A.; Altun, O. Some Remarks on the Fractional Sumudu Transform and Applications, Appl. Math. Inf. Sci., Volume 8 (2014), pp. 2881-2888

[15] Kirschner, D.; Panetta, J. C. Modeling immunotherapy of the tumor-immune interaction, J. Math. Biology, Volume 37 (1998), pp. 235-252 | DOI | Zbl

[16] Kuznetsov, V. A.; Makalkin, I. A.; Taylor, M. A.; Perelson, A. S. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biology, Volume 56 (1994), pp. 295-321 | Zbl | DOI

[17] Mirzaee, F. Differential Transform Method for Solving Linear and Nonlinear Systems of Ordinary Differential Equations, Appl. Math. Sci. (Ruse), Volume 5 (2011), pp. 3465-3472 | Zbl

[18] Moon, S. D.; Bhosale, A. B.; Gajbhiye, P. P.; Lonare, G. G. Solution of Non-Linear Differential Equations by Using Differential Transform Method, Int. J. Math. Stat. Invention, Volume 2 (2014), pp. 78-82

[19] Odibat, Z. M. Differential transform method for solving Volterra integral equation with separable kernels, Math. Comput. Modelling, Volume 48 (2008), pp. 1144-1149 | Zbl | DOI

[20] Patil, N.; Khambayat, A. Differential Transform Method For Ordinary Differential Equations, J. Comput. Math. Sci., Volume 3 (2012), pp. 330-337

[21] Rihan, F. A.; Safan, M.; Abdeen, M. A.; Abdel-Rahman, D. Qualitative and Computational Analysis of a Mathematical Model for the Tumor-Immune Interactions, J. Appl. Math., Volume 2012 (2012), pp. 1-19

[22] Zhou, J. K. Differential transformation and Application for electrical circuits, Huazhong University Press, Wuhan, 1986

Cité par Sources :