Voir la notice de l'article provenant de la source International Scientific Research Publications
Kassem, Mohamed Abd El Hady  1 ; Hemeda, A. A.  1 ; Abdeen, M. A.  1
@article{JNSA_2020_13_1_a1, author = {Kassem, Mohamed Abd El Hady and Hemeda, A. A. and Abdeen, M. A. }, title = {Solution of the tumor-immune system by differential transform method}, journal = {Journal of nonlinear sciences and its applications}, pages = {9-21}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2020}, doi = {10.22436/jnsa.013.01.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.02/} }
TY - JOUR AU - Kassem, Mohamed Abd El Hady AU - Hemeda, A. A. AU - Abdeen, M. A. TI - Solution of the tumor-immune system by differential transform method JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 9 EP - 21 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.02/ DO - 10.22436/jnsa.013.01.02 LA - en ID - JNSA_2020_13_1_a1 ER -
%0 Journal Article %A Kassem, Mohamed Abd El Hady %A Hemeda, A. A. %A Abdeen, M. A. %T Solution of the tumor-immune system by differential transform method %J Journal of nonlinear sciences and its applications %D 2020 %P 9-21 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.02/ %R 10.22436/jnsa.013.01.02 %G en %F JNSA_2020_13_1_a1
Kassem, Mohamed Abd El Hady ; Hemeda, A. A. ; Abdeen, M. A. . Solution of the tumor-immune system by differential transform method. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 9-21. doi : 10.22436/jnsa.013.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.02/
[1] Effects of vascularization on lymphocyte/tumor cell dynamics: Qualitative features, Math. Comput. Modelling, Volume 23 (1996), pp. 1-10 | Zbl | DOI
[2] Solution of boundary value problems for integro-differential equations by using transform method, Appl. Math. Comput., Volume 168 (2005), pp. 1145-1158 | DOI | Zbl
[3] A numerical algorithm with residual error estimation for solution of high-order Pantograph-type functional differential equations using Fibonacci polynomials, New Trends Math. Sci., Volume 3 (2015), pp. 90-102
[4] Fibonacci collocation method with a residual error function to solve linear Volterra integro differential equations, New Trends Math. Sci., Volume 4 (2016), pp. 1-14
[5] Solution of the system of ordinary differential equations by Adomian decomposition method, Appl. Math. Comput., Volume 147 (2004), pp. 713-719 | Zbl
[6] A Simple Algorithm for Calculating Adomian Polynomials, Int. J. Contemp. Math. Sci., Volume 2 (2007), pp. 975-982 | Zbl
[7] Numerical methods for ordinary differential equations, John Wiley & Sons, Chichester, 2003 | DOI
[8] Differential transform method for a nonlinear system of differential equations arising in HIV infection of CD4+T cells, Int. J. Nonlinear Anal. Appl., Volume 7 (2016), pp. 269-277
[9] Immune surveillance and neoplasia--I. A minimal mathematical model, Bull. Math. Biology, Volume 39 (1977), pp. 201-221 | DOI | Zbl
[10] Dynamics of the tumor--immune system comptition--the effect of time delay, Int. J. Appl. Math. Comput. Sci., Volume 13 (2003), pp. 395-406
[11] On the Solution of Fractional Order Nonlinear Boundary Value Problems By Using Differential Transformation Method, Eur. J. Pure Appl. Math., Volume 4 (2011), pp. 174-185 | Zbl
[12] On the solutions of some boundary value problems by using differential transformation method with convolution terms, Filomat, Volume 26 (2012), pp. 917-928 | Zbl
[13] On higher-orderboundaryvalueproblemsbyusing differential transformationmethodwith convolution terms, J. Franklin Inst., Volume 351 (2014), pp. 631-642 | DOI
[14] Some Remarks on the Fractional Sumudu Transform and Applications, Appl. Math. Inf. Sci., Volume 8 (2014), pp. 2881-2888
[15] Modeling immunotherapy of the tumor-immune interaction, J. Math. Biology, Volume 37 (1998), pp. 235-252 | DOI | Zbl
[16] Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biology, Volume 56 (1994), pp. 295-321 | Zbl | DOI
[17] Differential Transform Method for Solving Linear and Nonlinear Systems of Ordinary Differential Equations, Appl. Math. Sci. (Ruse), Volume 5 (2011), pp. 3465-3472 | Zbl
[18] Solution of Non-Linear Differential Equations by Using Differential Transform Method, Int. J. Math. Stat. Invention, Volume 2 (2014), pp. 78-82
[19] Differential transform method for solving Volterra integral equation with separable kernels, Math. Comput. Modelling, Volume 48 (2008), pp. 1144-1149 | Zbl | DOI
[20] Differential Transform Method For Ordinary Differential Equations, J. Comput. Math. Sci., Volume 3 (2012), pp. 330-337
[21] Qualitative and Computational Analysis of a Mathematical Model for the Tumor-Immune Interactions, J. Appl. Math., Volume 2012 (2012), pp. 1-19
[22] Differential transformation and Application for electrical circuits, Huazhong University Press, Wuhan, 1986
Cité par Sources :