Solvability of the functional integro-differential equation with self-reference and state-dependence
Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 1-8.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The existence of solutions of a functional integro-differential equation with self-reference and state-dependence will be studied. The continuous dependence of the solution on the delay $\phi(t)$, the functional $g$ and initial data $x_0$ will be proved.
DOI : 10.22436/jnsa.013.01.01
Classification : 34A12, 34A30, 34D20
Keywords: Functional equations, existence of solutions, continuous dependence, state-dependence, self-reference

El-Sayed, A. M. A.  1 ; Aahmed, Reda Gamal  2

1 Faculty of Science, Alexandria University, Egypt
2 Faculty of Science, Al-Azhar University, Cairo, Egypt
@article{JNSA_2020_13_1_a0,
     author = {El-Sayed, A. M. A.  and Aahmed, Reda Gamal },
     title = {Solvability of the functional integro-differential equation with self-reference and state-dependence},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-8},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     doi = {10.22436/jnsa.013.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.01/}
}
TY  - JOUR
AU  - El-Sayed, A. M. A. 
AU  - Aahmed, Reda Gamal 
TI  - Solvability of the functional integro-differential equation with self-reference and state-dependence
JO  - Journal of nonlinear sciences and its applications
PY  - 2020
SP  - 1
EP  - 8
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.01/
DO  - 10.22436/jnsa.013.01.01
LA  - en
ID  - JNSA_2020_13_1_a0
ER  - 
%0 Journal Article
%A El-Sayed, A. M. A. 
%A Aahmed, Reda Gamal 
%T Solvability of the functional integro-differential equation with self-reference and state-dependence
%J Journal of nonlinear sciences and its applications
%D 2020
%P 1-8
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.01/
%R 10.22436/jnsa.013.01.01
%G en
%F JNSA_2020_13_1_a0
El-Sayed, A. M. A. ; Aahmed, Reda Gamal . Solvability of the functional integro-differential equation with self-reference and state-dependence. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 1-8. doi : 10.22436/jnsa.013.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.01/

[1] Bacoţiu, C. Volterra--fredholm nonlinear systems with modified argument via weakly picard operators theory, Carpathian J. Math., Volume 24 (2008), pp. 1-9 | Zbl

[2] Benchohra, M.; Darwish, M. A. On unique solvability of quadratic integral equations with linear modification of the argument, Miskolc Math. Notes, Volume 10 (2009), pp. 3-10 | Zbl

[3] Berinde, V. Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes, Volume 11 (2010), pp. 13-26 | Zbl

[4] Buica, A. Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory (Babes-Bolyai Univ., Cluj-Napoca), Volume 3 (1995), pp. 1-14 | Zbl

[5] Eder, E. The functional differential equation $x'(t)=x(x(t))$, J. Differential Equations, Volume 54 (1984), pp. 390-400 | DOI

[6] Fečkan, M. On a certain type of functional differential equations, Math. Slovaca, Volume 43 (1993), pp. 39-43 | Zbl

[7] Goebel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambirdge Universty Press, Cambirdge, 1990 | Zbl

[8] Kolomogorov, A. N.; Fomin, S. V. Inroductory real analysis, Dover Publications, New York, 1975

[9] Staněk, S. Global properties of decreasing solutions of the equation $x'(t)=x(x(t))+x(t)$, Funct. Differ. Equ., Volume 4 (1997), pp. 191-213 | Zbl

[10] Staněk, S. Globel properties of solutions of the functional differenatial equation $x(t)x'(t)=kx(x(t)),~ 0 <|k|< 1$, Funct. Differ. Equ., Volume 9 (2004), pp. 527-550

[11] Wang, K. On the equation $x'(t)=f(x(x(t)))$, Funkcial. Ekvac., Volume 33 (1990), pp. 405-425

[12] Zhang, P. P.; Gong, X. B. Existence of solutions for iterative differential equations, Electron. J. Differential Equations, Volume 2014 (2014), pp. 1-10 | Zbl

Cité par Sources :