Voir la notice de l'article provenant de la source International Scientific Research Publications
El-Sayed, A. M. A.  1 ; Aahmed, Reda Gamal  2
@article{JNSA_2020_13_1_a0, author = {El-Sayed, A. M. A. and Aahmed, Reda Gamal }, title = {Solvability of the functional integro-differential equation with self-reference and state-dependence}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-8}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2020}, doi = {10.22436/jnsa.013.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.01/} }
TY - JOUR AU - El-Sayed, A. M. A. AU - Aahmed, Reda Gamal TI - Solvability of the functional integro-differential equation with self-reference and state-dependence JO - Journal of nonlinear sciences and its applications PY - 2020 SP - 1 EP - 8 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.01/ DO - 10.22436/jnsa.013.01.01 LA - en ID - JNSA_2020_13_1_a0 ER -
%0 Journal Article %A El-Sayed, A. M. A. %A Aahmed, Reda Gamal %T Solvability of the functional integro-differential equation with self-reference and state-dependence %J Journal of nonlinear sciences and its applications %D 2020 %P 1-8 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.01/ %R 10.22436/jnsa.013.01.01 %G en %F JNSA_2020_13_1_a0
El-Sayed, A. M. A. ; Aahmed, Reda Gamal . Solvability of the functional integro-differential equation with self-reference and state-dependence. Journal of nonlinear sciences and its applications, Tome 13 (2020) no. 1, p. 1-8. doi : 10.22436/jnsa.013.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.013.01.01/
[1] Volterra--fredholm nonlinear systems with modified argument via weakly picard operators theory, Carpathian J. Math., Volume 24 (2008), pp. 1-9 | Zbl
[2] On unique solvability of quadratic integral equations with linear modification of the argument, Miskolc Math. Notes, Volume 10 (2009), pp. 3-10 | Zbl
[3] Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes, Volume 11 (2010), pp. 13-26 | Zbl
[4] Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory (Babes-Bolyai Univ., Cluj-Napoca), Volume 3 (1995), pp. 1-14 | Zbl
[5] The functional differential equation $x'(t)=x(x(t))$, J. Differential Equations, Volume 54 (1984), pp. 390-400 | DOI
[6] On a certain type of functional differential equations, Math. Slovaca, Volume 43 (1993), pp. 39-43 | Zbl
[7] Topics in metric fixed point theory, Cambirdge Universty Press, Cambirdge, 1990 | Zbl
[8] Inroductory real analysis, Dover Publications, New York, 1975
[9] Global properties of decreasing solutions of the equation $x'(t)=x(x(t))+x(t)$, Funct. Differ. Equ., Volume 4 (1997), pp. 191-213 | Zbl
[10] Globel properties of solutions of the functional differenatial equation $x(t)x'(t)=kx(x(t)),~ 0 <|k|< 1$, Funct. Differ. Equ., Volume 9 (2004), pp. 527-550
[11] On the equation $x'(t)=f(x(x(t)))$, Funkcial. Ekvac., Volume 33 (1990), pp. 405-425
[12] Existence of solutions for iterative differential equations, Electron. J. Differential Equations, Volume 2014 (2014), pp. 1-10 | Zbl
Cité par Sources :