Some recurrence relations of poly-Cauchy numbers
Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 12, p. 829-845.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Poly-Cauchy numbers $c_n^{(k)}$ ($n\ge 0$, $k\ge 1$) have explicit expressions in terms of the Stirling numbers of the first kind. When the index is negative, there exists a different expression. However, the sequence $\{c_n^{(-k)}\}_{n\ge 0}$ seem quite irregular for a fixed integer $k\ge 2$. In this paper we establish a certain kind of recurrence relations among the sequence $\{c_n^{(-k)}\}_{n\ge 0}$, analyzing the structure of poly-Cauchy numbers. We also study those of poly-Cauchy numbers of the second kind, poly-Euler numbers, and poly-Euler numbers of the second kind. Some different proofs are given. As applications, some leaping relations are shown.
DOI : 10.22436/jnsa.012.12.05
Classification : 11B75, 11B37, 11B68, 11B73, 05A19, 11C20, 15A15
Keywords: Poly-Cauchy numbers, poly-Euler numbers, recurrence, leaping relations, Vandermonde's determinant

Komatsu, Takao  1

1 Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
@article{JNSA_2019_12_12_a4,
     author = {Komatsu, Takao },
     title = {Some recurrence relations of {poly-Cauchy} numbers},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {829-845},
     publisher = {mathdoc},
     volume = {12},
     number = {12},
     year = {2019},
     doi = {10.22436/jnsa.012.12.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.05/}
}
TY  - JOUR
AU  - Komatsu, Takao 
TI  - Some recurrence relations of poly-Cauchy numbers
JO  - Journal of nonlinear sciences and its applications
PY  - 2019
SP  - 829
EP  - 845
VL  - 12
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.05/
DO  - 10.22436/jnsa.012.12.05
LA  - en
ID  - JNSA_2019_12_12_a4
ER  - 
%0 Journal Article
%A Komatsu, Takao 
%T Some recurrence relations of poly-Cauchy numbers
%J Journal of nonlinear sciences and its applications
%D 2019
%P 829-845
%V 12
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.05/
%R 10.22436/jnsa.012.12.05
%G en
%F JNSA_2019_12_12_a4
Komatsu, Takao . Some recurrence relations of poly-Cauchy numbers. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 12, p. 829-845. doi : 10.22436/jnsa.012.12.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.05/

[1] Arakawa, T.; Ibukiyama, T.; Kaneko, M. Bernoulli numbers and zeta functions. With an appendix by Don Zagier, Springer, Tokyo, 2014 | Zbl | DOI

[2] Arakawa, T.; Kaneko, M. On Poly-Bernoulli numbers, Comment. Math. Univ. St. Paul., Volume 48 (1999), pp. 159-167

[3] Comtet, L. Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974

[4] Elsner, C.; Komatsu, T. On the residue classes of integer sequences satisfying a linear three-term recurrence formula, Linear Algebra Appl., Volume 429 (2008), pp. 933-947 | Zbl | DOI

[5] Kamano, K.; Komatsu, T. Poly-Cauchy polynomials, Mosc. J. Comb. Number Theory, Volume 3 (2013), pp. 61-87

[6] Kamano, K.; Komatsu, T. Some congruence relations of poly-Cauchy numbers, J. Comb. Number Theory, Volume 5 (2014), pp. 145-150 | Zbl

[7] Kaneko, M. Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, Volume 9 (1997), pp. 221-228

[8] Komatsu, T. Four-term leaping recurrence relations, Linear Multilinear Algebra, Volume 58 (2010), pp. 875-886 | Zbl | DOI

[9] Komatsu, T. Poly-Cauchy numbers, Kyushu J. Math., Volume 67 (2013), pp. 143-153 | DOI

[10] Komatsu, T. Complementary Euler numbers, Period. Math. Hungar., Volume 75 (2017), pp. 302-314 | DOI | Zbl

[11] Komatsu, T. On poly-Euler numbers of the second kind, arXiv, Volume 2018 (2018), pp. 1-16

[12] Merlini, D.; Sprugnoli, R.; Verri, M. C. The Cauchy numbers, Discrete Math., Volume 306 (2006), pp. 1906-1920 | DOI

[13] Ohno, Y.; Sasaki, Y. On poly-Euler numbers, J. Aust. Math. Soc., Volume 103 (2017), pp. 126-144 | DOI | Zbl

[14] Sasaki, Y. Recurrence formulas for poly-Bernoulli numbers and their combinatoric interpretations, Presented at the workshop of Analytic Number Theory and Related Topics (Research Institute for Mathematical Sciences, Kyoto University), Volume 2018 (2018), pp. 1-11

[15] Sloane, N. J. A. The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., Volume 65 (2018), pp. 1062-1074 | DOI | Zbl

Cité par Sources :