Voir la notice de l'article provenant de la source International Scientific Research Publications
Komatsu, Takao  1
@article{JNSA_2019_12_12_a4, author = {Komatsu, Takao }, title = {Some recurrence relations of {poly-Cauchy} numbers}, journal = {Journal of nonlinear sciences and its applications}, pages = {829-845}, publisher = {mathdoc}, volume = {12}, number = {12}, year = {2019}, doi = {10.22436/jnsa.012.12.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.05/} }
TY - JOUR AU - Komatsu, Takao TI - Some recurrence relations of poly-Cauchy numbers JO - Journal of nonlinear sciences and its applications PY - 2019 SP - 829 EP - 845 VL - 12 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.05/ DO - 10.22436/jnsa.012.12.05 LA - en ID - JNSA_2019_12_12_a4 ER -
%0 Journal Article %A Komatsu, Takao %T Some recurrence relations of poly-Cauchy numbers %J Journal of nonlinear sciences and its applications %D 2019 %P 829-845 %V 12 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.05/ %R 10.22436/jnsa.012.12.05 %G en %F JNSA_2019_12_12_a4
Komatsu, Takao . Some recurrence relations of poly-Cauchy numbers. Journal of nonlinear sciences and its applications, Tome 12 (2019) no. 12, p. 829-845. doi : 10.22436/jnsa.012.12.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.012.12.05/
[1] Bernoulli numbers and zeta functions. With an appendix by Don Zagier, Springer, Tokyo, 2014 | Zbl | DOI
[2] On Poly-Bernoulli numbers, Comment. Math. Univ. St. Paul., Volume 48 (1999), pp. 159-167
[3] Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974
[4] On the residue classes of integer sequences satisfying a linear three-term recurrence formula, Linear Algebra Appl., Volume 429 (2008), pp. 933-947 | Zbl | DOI
[5] Poly-Cauchy polynomials, Mosc. J. Comb. Number Theory, Volume 3 (2013), pp. 61-87
[6] Some congruence relations of poly-Cauchy numbers, J. Comb. Number Theory, Volume 5 (2014), pp. 145-150 | Zbl
[7] Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, Volume 9 (1997), pp. 221-228
[8] Four-term leaping recurrence relations, Linear Multilinear Algebra, Volume 58 (2010), pp. 875-886 | Zbl | DOI
[9] Poly-Cauchy numbers, Kyushu J. Math., Volume 67 (2013), pp. 143-153 | DOI
[10] Complementary Euler numbers, Period. Math. Hungar., Volume 75 (2017), pp. 302-314 | DOI | Zbl
[11] On poly-Euler numbers of the second kind, arXiv, Volume 2018 (2018), pp. 1-16
[12] The Cauchy numbers, Discrete Math., Volume 306 (2006), pp. 1906-1920 | DOI
[13] On poly-Euler numbers, J. Aust. Math. Soc., Volume 103 (2017), pp. 126-144 | DOI | Zbl
[14] Recurrence formulas for poly-Bernoulli numbers and their combinatoric interpretations, Presented at the workshop of Analytic Number Theory and Related Topics (Research Institute for Mathematical Sciences, Kyoto University), Volume 2018 (2018), pp. 1-11
[15] The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., Volume 65 (2018), pp. 1062-1074 | DOI | Zbl
Cité par Sources :